supplementary materials


vm2139 scheme

Acta Cryst. (2012). E68, m2    [ doi:10.1107/S1600536811050859 ]

Bis(formato-[kappa]O)bis[1-(pyridin-2-yl)ethanone oxime-[kappa]2N,N']nickel(II)

L. Li, X. Qiu and D. Li

Abstract top

In the title compound, [Ni(HCOO)2(C7H8N2O)2], the Ni atom is six-coordinated by four N atoms from two oxime ligands and by two O atoms from two formate ions in a distorted octahedral geometry, with the oxime-N atoms mutually trans. The molecular conformation is stabilized by intramolecular O-H...O hydrogen bonds.

Comment top

Recently, there is a intense interest in the coordination chemistry of oximes (Davidson et al., 2007; Pavlishchuk et al., 2003). 2-Pyridyl oximes which are versatile ligands for a variety of research objectives are popular ligands in coordination chemistry (Chaudhuri, 2003; Milios et al., 2006). We report here the synthesis and structure of the title compound.

The complex (Fig. 1) crystallizes in monoclinic space group P21/c. The central Ni atom is six coordinated by four N atoms from the oxime ligands and two O atoms from the formate ions in a distorted octahedral geometry. The N1 and N3 atoms of methyl 2-pyridylketone oxime occupy the axial sites. The N2, N4 and O3, O5 are in the equatorial plane. The six coordinated molecule is the cis-cis-trans isomer considering the positions of the coordinated formyl groups, pyridyl and oxime nitrogen atoms, respectively (Zuo et al., 2007). The Ni–N bond distances in the compound are in the range of 2.075 (3)–2.107 (3) Å which is longer than the Ni–O distances (2.049 (3)–2.070 (3) Å). The molecular conformation is stabilized by intramolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For uses of oximes, see: Davidson et al. (2007); Pavlishchuk et al. (2003) and of 2-pyridyl oximes, see: Chaudhuri (2003); Milios et al. (2006). For a related structure, see: Zuo et al. (2007)

Experimental top

A solution of NiSO4.6H2O (0.131 g, 0.5 mmol) and methyl 2-pyridyl ketone oxime (0.068 g, 0.5 mmol) in MeOH was treated with equivalent amounts of HCOONa. After stirring for 6 h, a green solution was obtained. After filtration, green block crystals suitable for single-crystal X-ray diffraction were obtained after two weeks by evaporating the resulting filtrate in air. Yield: 47% (based on Ni).

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H = 0.82 Å [Uiso(H) = 1.5Ueq(O)], C—H = 0.97 (methyl) Å [Uiso(H) = 1.5Ueq(C)], and C—H = 0.93 (aromatic and formic) Å [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
Bis(formato-κO)bis[1-(pyridin-2-yl)ethanone oxime-κ2N,N']nickel(II) top
Crystal data top
[Ni(CHO2)2(C7H8N2O)2]F(000) = 872
Mr = 421.05Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3030 reflections
a = 10.5000 (12) Åθ = 2.4–25.3°
b = 14.6109 (16) ŵ = 1.12 mm1
c = 15.7391 (17) ÅT = 298 K
β = 131.850 (2)°Block, green
V = 1798.6 (3) Å30.20 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3171 independent reflections
Radiation source: fine-focus sealed tube2209 reflections with I > 2σ(I)
graphiteRint = 0.077
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.807, Tmax = 0.887k = 1617
9294 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
3171 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(CHO2)2(C7H8N2O)2]V = 1798.6 (3) Å3
Mr = 421.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5000 (12) ŵ = 1.12 mm1
b = 14.6109 (16) ÅT = 298 K
c = 15.7391 (17) Å0.20 × 0.17 × 0.11 mm
β = 131.850 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3171 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2209 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.887Rint = 0.077
9294 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.137Δρmax = 0.98 e Å3
S = 1.00Δρmin = 0.38 e Å3
3171 reflectionsAbsolute structure: ?
244 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.79945 (5)0.29154 (3)0.43579 (3)0.0370 (2)
N10.9617 (4)0.2714 (2)0.6114 (2)0.0438 (8)
N20.9641 (4)0.1861 (2)0.4685 (2)0.0417 (7)
N30.6356 (4)0.2740 (2)0.2604 (2)0.0425 (7)
N40.6175 (3)0.19950 (19)0.4010 (2)0.0389 (7)
O10.9530 (4)0.3159 (2)0.6839 (2)0.0625 (8)
H10.87150.35120.64730.094*
O20.6505 (4)0.3135 (2)0.1895 (2)0.0600 (8)
H20.72580.35250.22440.090*
O30.6415 (3)0.39657 (19)0.4059 (2)0.0594 (7)
O40.6976 (4)0.4197 (3)0.5686 (3)0.0824 (11)
O50.9714 (3)0.38535 (19)0.4670 (2)0.0565 (7)
O60.9048 (4)0.4151 (2)0.3023 (2)0.0647 (8)
C11.1889 (5)0.1813 (3)0.7810 (3)0.0666 (13)
H1A1.18020.22600.82170.100*
H1B1.30510.17800.81330.100*
H1C1.15400.12260.78660.100*
C21.0756 (4)0.2085 (3)0.6584 (3)0.0453 (9)
C31.0842 (4)0.1614 (3)0.5792 (3)0.0454 (9)
C41.2087 (5)0.0964 (3)0.6154 (4)0.0640 (12)
H41.29200.08110.69210.077*
C51.2066 (6)0.0551 (3)0.5356 (4)0.0763 (14)
H51.28800.01130.55780.092*
C61.0840 (6)0.0793 (3)0.4241 (4)0.0692 (13)
H61.08030.05180.36920.083*
C70.9647 (5)0.1451 (3)0.3928 (3)0.0527 (10)
H70.88190.16140.31640.063*
C80.3945 (5)0.1940 (3)0.0882 (3)0.0625 (12)
H8A0.36720.24900.04550.094*
H8B0.29150.16740.06430.094*
H8C0.44930.15140.07500.094*
C90.5122 (4)0.2164 (2)0.2125 (3)0.0399 (8)
C100.4964 (4)0.1737 (3)0.2905 (3)0.0398 (8)
C110.3649 (5)0.1158 (3)0.2541 (3)0.0508 (10)
H110.28370.09820.17800.061*
C120.3560 (5)0.0843 (3)0.3330 (4)0.0570 (11)
H120.26860.04490.31050.068*
C130.4765 (5)0.1115 (3)0.4443 (3)0.0535 (10)
H130.47100.09210.49810.064*
C140.6058 (4)0.1680 (3)0.4749 (3)0.0428 (9)
H140.68920.18520.55100.051*
C150.6164 (5)0.4323 (3)0.4662 (4)0.0604 (11)
H150.52570.47330.42930.072*
C160.9880 (5)0.4261 (3)0.4058 (4)0.0535 (10)
H161.07340.47030.44190.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0332 (3)0.0470 (3)0.0287 (3)0.0006 (2)0.0199 (2)0.00075 (19)
N10.0397 (17)0.061 (2)0.0314 (16)0.0092 (15)0.0238 (15)0.0067 (14)
N20.0377 (16)0.0543 (19)0.0363 (17)0.0045 (13)0.0260 (15)0.0063 (13)
N30.0422 (17)0.055 (2)0.0331 (16)0.0040 (15)0.0263 (15)0.0067 (14)
N40.0350 (16)0.0485 (18)0.0303 (15)0.0008 (13)0.0206 (14)0.0040 (12)
O10.0598 (17)0.091 (2)0.0364 (15)0.0007 (15)0.0322 (14)0.0092 (14)
O20.0632 (18)0.082 (2)0.0373 (15)0.0115 (15)0.0347 (14)0.0029 (13)
O30.0552 (17)0.0595 (18)0.0588 (18)0.0075 (13)0.0361 (15)0.0041 (14)
O40.083 (2)0.104 (3)0.073 (2)0.022 (2)0.058 (2)0.0027 (19)
O50.0495 (16)0.0650 (19)0.0470 (16)0.0112 (13)0.0289 (14)0.0010 (13)
O60.0609 (18)0.074 (2)0.0571 (19)0.0065 (16)0.0386 (16)0.0083 (16)
C10.051 (3)0.095 (3)0.037 (2)0.004 (2)0.022 (2)0.012 (2)
C20.0305 (19)0.062 (3)0.033 (2)0.0076 (18)0.0172 (17)0.0042 (17)
C30.035 (2)0.055 (2)0.044 (2)0.0015 (17)0.0258 (18)0.0078 (18)
C40.052 (3)0.077 (3)0.058 (3)0.014 (2)0.034 (2)0.020 (2)
C50.071 (3)0.078 (3)0.091 (4)0.033 (3)0.059 (3)0.026 (3)
C60.080 (3)0.074 (3)0.083 (4)0.012 (3)0.066 (3)0.000 (3)
C70.055 (2)0.063 (3)0.050 (2)0.007 (2)0.039 (2)0.003 (2)
C80.056 (3)0.087 (3)0.032 (2)0.012 (2)0.024 (2)0.012 (2)
C90.0332 (19)0.052 (2)0.0245 (17)0.0053 (17)0.0151 (16)0.0010 (15)
C100.0371 (19)0.045 (2)0.0356 (19)0.0024 (16)0.0237 (17)0.0014 (16)
C110.045 (2)0.058 (3)0.039 (2)0.0116 (18)0.0237 (18)0.0149 (18)
C120.058 (3)0.057 (3)0.064 (3)0.019 (2)0.044 (2)0.012 (2)
C130.062 (3)0.057 (3)0.049 (2)0.011 (2)0.040 (2)0.0053 (19)
C140.042 (2)0.054 (2)0.0329 (19)0.0052 (17)0.0250 (18)0.0043 (17)
C150.052 (3)0.057 (3)0.077 (3)0.002 (2)0.045 (3)0.011 (2)
C160.042 (2)0.050 (2)0.062 (3)0.0012 (18)0.032 (2)0.008 (2)
Geometric parameters (Å, °) top
Ni1—O52.049 (3)C2—C31.478 (5)
Ni1—O32.070 (3)C3—C41.394 (5)
Ni1—N32.075 (3)C4—C51.379 (7)
Ni1—N12.085 (3)C4—H40.9300
Ni1—N42.089 (3)C5—C61.359 (6)
Ni1—N22.107 (3)C5—H50.9300
N1—C21.281 (5)C6—C71.382 (5)
N1—O11.368 (4)C6—H60.9300
N2—C71.337 (5)C7—H70.9300
N2—C31.351 (4)C8—C91.494 (5)
N3—C91.285 (4)C8—H8A0.9600
N3—O21.356 (4)C8—H8B0.9600
N4—C141.330 (4)C8—H8C0.9600
N4—C101.354 (4)C9—C101.481 (5)
O1—H10.8200C10—C111.377 (5)
O2—H20.8200C11—C121.386 (5)
O3—C151.256 (5)C11—H110.9300
O4—C151.235 (5)C12—C131.367 (5)
O5—C161.239 (5)C12—H120.9300
O6—C161.243 (5)C13—C141.373 (5)
C1—C21.493 (5)C13—H130.9300
C1—H1A0.9600C14—H140.9300
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—H160.9300
O5—Ni1—O390.17 (12)C5—C4—C3119.0 (4)
O5—Ni1—N3102.57 (11)C5—C4—H4120.5
O3—Ni1—N387.81 (11)C3—C4—H4120.5
O5—Ni1—N188.09 (11)C6—C5—C4119.2 (4)
O3—Ni1—N1103.18 (12)C6—C5—H5120.4
N3—Ni1—N1164.78 (12)C4—C5—H5120.4
O5—Ni1—N4177.98 (11)C5—C6—C7119.5 (4)
O3—Ni1—N487.92 (11)C5—C6—H6120.2
N3—Ni1—N476.72 (11)C7—C6—H6120.2
N1—Ni1—N492.98 (11)N2—C7—C6122.4 (4)
O5—Ni1—N288.99 (12)N2—C7—H7118.8
O3—Ni1—N2178.97 (12)C6—C7—H7118.8
N3—Ni1—N292.95 (11)C9—C8—H8A109.5
N1—Ni1—N276.20 (11)C9—C8—H8B109.5
N4—Ni1—N292.93 (12)H8A—C8—H8B109.5
C2—N1—O1114.6 (3)C9—C8—H8C109.5
C2—N1—Ni1119.3 (3)H8A—C8—H8C109.5
O1—N1—Ni1126.0 (2)H8B—C8—H8C109.5
C7—N2—C3118.3 (3)N3—C9—C10114.5 (3)
C7—N2—Ni1126.9 (3)N3—C9—C8122.8 (3)
C3—N2—Ni1114.7 (2)C10—C9—C8122.7 (3)
C9—N3—O2114.8 (3)N4—C10—C11121.8 (3)
C9—N3—Ni1118.6 (2)N4—C10—C9114.8 (3)
O2—N3—Ni1126.4 (2)C11—C10—C9123.3 (3)
C14—N4—C10118.2 (3)C10—C11—C12118.7 (3)
C14—N4—Ni1126.6 (2)C10—C11—H11120.6
C10—N4—Ni1115.2 (2)C12—C11—H11120.6
N1—O1—H1109.5C13—C12—C11119.6 (4)
N3—O2—H2109.5C13—C12—H12120.2
C15—O3—Ni1132.6 (3)C11—C12—H12120.2
C16—O5—Ni1133.9 (3)C12—C13—C14118.6 (4)
C2—C1—H1A109.5C12—C13—H13120.7
C2—C1—H1B109.5C14—C13—H13120.7
H1A—C1—H1B109.5N4—C14—C13123.2 (3)
C2—C1—H1C109.5N4—C14—H14118.4
H1A—C1—H1C109.5C13—C14—H14118.4
H1B—C1—H1C109.5O4—C15—O3127.8 (4)
N1—C2—C3113.9 (3)O4—C15—H15116.1
N1—C2—C1124.6 (4)O3—C15—H15116.1
C3—C2—C1121.4 (4)O5—C16—O6128.1 (4)
N2—C3—C4121.5 (4)O5—C16—H16115.9
N2—C3—C2115.8 (3)O6—C16—H16115.9
C4—C3—C2122.7 (4)
O5—Ni1—N1—C291.6 (3)O3—Ni1—O5—C1687.8 (4)
O3—Ni1—N1—C2178.7 (3)N3—Ni1—O5—C160.0 (4)
N3—Ni1—N1—C243.4 (6)N1—Ni1—O5—C16169.0 (4)
N4—Ni1—N1—C290.2 (3)N4—Ni1—O5—C1669 (3)
N2—Ni1—N1—C22.1 (3)N2—Ni1—O5—C1692.8 (4)
O5—Ni1—N1—O192.8 (3)O1—N1—C2—C3179.6 (3)
O3—Ni1—N1—O13.1 (3)Ni1—N1—C2—C34.3 (4)
N3—Ni1—N1—O1132.2 (4)O1—N1—C2—C11.9 (5)
N4—Ni1—N1—O185.4 (3)Ni1—N1—C2—C1174.1 (3)
N2—Ni1—N1—O1177.7 (3)C7—N2—C3—C41.3 (5)
O5—Ni1—N2—C789.8 (3)Ni1—N2—C3—C4176.2 (3)
O3—Ni1—N2—C7125 (6)C7—N2—C3—C2179.4 (3)
N3—Ni1—N2—C712.8 (3)Ni1—N2—C3—C23.0 (4)
N1—Ni1—N2—C7178.0 (3)N1—C2—C3—N24.8 (5)
N4—Ni1—N2—C789.6 (3)C1—C2—C3—N2173.7 (3)
O5—Ni1—N2—C387.6 (3)N1—C2—C3—C4174.5 (4)
O3—Ni1—N2—C353 (6)C1—C2—C3—C47.0 (6)
N3—Ni1—N2—C3169.9 (2)N2—C3—C4—C51.3 (6)
N1—Ni1—N2—C30.7 (2)C2—C3—C4—C5179.4 (4)
N4—Ni1—N2—C393.0 (3)C3—C4—C5—C60.4 (7)
O5—Ni1—N3—C9178.4 (3)C4—C5—C6—C70.5 (7)
O3—Ni1—N3—C991.9 (3)C3—N2—C7—C60.4 (6)
N1—Ni1—N3—C944.9 (5)Ni1—N2—C7—C6176.8 (3)
N4—Ni1—N3—C93.5 (3)C5—C6—C7—N20.5 (7)
N2—Ni1—N3—C988.8 (3)O2—N3—C9—C10179.8 (3)
O5—Ni1—N3—O22.9 (3)Ni1—N3—C9—C104.1 (4)
O3—Ni1—N3—O292.5 (3)O2—N3—C9—C80.3 (5)
N1—Ni1—N3—O2130.7 (4)Ni1—N3—C9—C8175.7 (3)
N4—Ni1—N3—O2179.1 (3)C14—N4—C10—C110.8 (5)
N2—Ni1—N3—O286.8 (3)Ni1—N4—C10—C11177.8 (3)
O5—Ni1—N4—C14105 (3)C14—N4—C10—C9176.2 (3)
O3—Ni1—N4—C1486.4 (3)Ni1—N4—C10—C90.8 (4)
N3—Ni1—N4—C14174.6 (3)N3—C9—C10—N42.1 (5)
N1—Ni1—N4—C1416.7 (3)C8—C9—C10—N4177.7 (3)
N2—Ni1—N4—C1493.1 (3)N3—C9—C10—C11174.8 (3)
O5—Ni1—N4—C1072 (3)C8—C9—C10—C115.3 (6)
O3—Ni1—N4—C1090.4 (2)N4—C10—C11—C120.9 (6)
N3—Ni1—N4—C102.2 (2)C9—C10—C11—C12175.8 (4)
N1—Ni1—N4—C10166.5 (2)C10—C11—C12—C130.3 (6)
N2—Ni1—N4—C1090.2 (2)C11—C12—C13—C141.4 (6)
O5—Ni1—O3—C15100.5 (4)C10—N4—C14—C130.5 (5)
N3—Ni1—O3—C15156.9 (4)Ni1—N4—C14—C13176.2 (3)
N1—Ni1—O3—C1512.4 (4)C12—C13—C14—N41.6 (6)
N4—Ni1—O3—C1580.1 (4)Ni1—O3—C15—O49.0 (7)
N2—Ni1—O3—C1566 (6)Ni1—O5—C16—O65.8 (7)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.692.508 (4)177.
O2—H2···O60.821.672.482 (4)169.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.692.508 (4)177.
O2—H2···O60.821.672.482 (4)169.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (Nos. 20671048, 21041002) and the Shandong Province Higher School Science and Technology Plan Projects (No. J10LB61).

references
References top

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–190.

Davidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D. & Mahon, M. F. (2007). Polyhedron, 26, 975–980.

Milios, C. J., Stamatatos, T. C. & Perlepes, S. P. (2006). Polyhedron, 25, 134–194.

Pavlishchuk, V. V., Kolotilov, S. V., Addison, A. W., Prushan, M. J., Schollmeyer, D., Thompson, L. K., Weyhermuller, T. & Goreshnik, E. A. (2003). Dalton Trans. pp. 1587–1595.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zuo, J., Dou, J., Li, D., Wang, D. & Sun, Y. (2007). Acta Cryst. E63, m3183–m3184.