supplementary materials


wm2567 scheme

Acta Cryst. (2012). E68, m3    [ doi:10.1107/S1600536811051373 ]

catena-Poly[[(8-aminoquinoline-[kappa]2N,N')cadmium]-di-[mu]-thiocyanato-[kappa]2N:S;[kappa]2S:N-[(8-aminoquinoline-[kappa]2N,N')cadmium]-di-[mu]-chlorido]

H. Xu and C. Guo

Abstract top

In the title compound, [CdCl(NCS)(C9H8N2)]n, the CdII atom is in a distorted octahedral coordination environment defined by two chloride anions, two N atoms from an 8-aminoquinoline ligand, one N atom from one thiocyanate anion and one S atom from a symmetry-related thiocyanate anion. Two CdII atoms are bridged by two chloride anions, forming an inversion-related Cd2Cl2 unit; these units are further linked through thiocyanate anions, leading to a chain structure extending parallel to [010]. Weak [pi]-[pi] stacking interactions with centroid-centroid distances of 3.430 (4) Å and an interplanar separation of 3.390 (3) Å between the pyridine and benzene rings link the chains into a two-dimensional network parallel to (10\overline{1}). Weak intermolecular C-H...Cl hydrogen-bonding interactions help to consolidate the crystal packing.

Comment top

8-aminoquinoline and its derivatives are systems that have been recently focused on, because of antiprotozal and other pharmaceutical properties (Tekwami & Walker, 2006). They are also strongly fluorescent and have been employed in the analytical study of heavy metals (Fritsch et al., 2006; Macias et al., 2003). They also have been used to prepare highly conducting co-polymers (Li et al., 2005). Different functionalized molecules of 8- aminoquinoline have been recently reported (Kim et al., 2004). However, the coordination chemistry of 8-aminoquinoline, as such, is scarce (Bortoluzzi et al., 2006). We report here the crystal structure of the title compound, [CdCl(SCN)(C9H8N2)]n, (I).

As shown in Fig. 1, the asymmetric unit of (I) contains one CdII cation, one chloride anion and one thiocyanate anion. Each CdII cation is in a distorted octahedral coordination environment defined by two chloride anions, two nitrogen atoms from one 8-aminoquinoline ligand, one nitrogen atom from one thiocyanate anion and one sulfur atom from another thiocyanate anion. Two CdII atoms are connected by two chloride anions to form a dimer and these dimers are further bridged through two thiocyanate anions, leading to a chain structure extending parallel to [010] (Fig. 2). Moreover, weak π-π stacking interactions (centroid···centroid distances of 3.430 (4) Å and an interplanar separation of 3.390 (3) Å between pyridyl rings and benzene rings) link the chains into a two-dimensional supramolecular network in the (101) plane, which is further consolidated by intermolecular C—H···Cl hydrogen bonds to genrate a three-dimensional supramolecular structure (Fig. 3). It is interesting to note that the amino hydrogen atoms are not involved in any hydrogen bonding interactions.

Related literature top

For background and applications of 8-aminoquinoline and its derivatives, see: Fritsch et al. (2006); Kim et al. (2004); Li et al. (2005); Macias et al. (2003); Bortoluzzi et al. (2006); Tekwami & Walker (2006).

Experimental top

8-aminoquinoline (1 mmol) and potassium thiocyanate (1 mmol) in 20 ml methanol were added to a clear solution of cadmium chloride (1 mmol) in 20 ml methanol. Stirring was continued for 1 h; the colour changed to light yellow. The volume of the solution was reduced to 10 ml, filtered and kept for crystallization after addition of 2 drops of 2-methoxy ethanol. Colorless block-like crystals were obtained by slow evaporation of the solvent. Yield: 59%.

Refinement top

All hydrogen atoms bonded to carbon were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The amino H atoms were found from difference maps and were refined with distance restraint of N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y - 1, -z + 1; (ii) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the chain structure extending parallel to [010].
[Figure 3] Fig. 3. A view showing part of the three-dimensional supramolecular network linked by C–H···Cl hydrogen bonds and weak ππ stacking interactions. Hydrogen bonds are shown as dashed lines.
catena-Poly[[(8-aminoquinoline-κ2N,N')cadmium]- di-µ-thiocyanato-κ2N:S;κ2S:N-[(8- aminoquinoline-κ2N,N')cadmium]-di-µ-chlorido] top
Crystal data top
[CdCl(NCS)(C9H8N2)]Z = 2
Mr = 350.10F(000) = 340
Triclinic, P1Dx = 2.013 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4965 (6) ÅCell parameters from 5150 reflections
b = 8.6245 (7) Åθ = 2.1–25.5°
c = 10.5247 (12) ŵ = 2.28 mm1
α = 106.649 (7)°T = 293 K
β = 98.047 (7)°Block, colorless
γ = 112.561 (5)°0.22 × 0.20 × 0.18 mm
V = 577.53 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2104 independent reflections
Radiation source: sealed tube1961 reflections with I > 2σ(I)
graphiteRint = 0.021
phi and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.635, Tmax = 0.685k = 1010
5150 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.2713P]
where P = (Fo2 + 2Fc2)/3
2104 reflections(Δ/σ)max = 0.002
153 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[CdCl(NCS)(C9H8N2)]γ = 112.561 (5)°
Mr = 350.10V = 577.53 (9) Å3
Triclinic, P1Z = 2
a = 7.4965 (6) ÅMo Kα radiation
b = 8.6245 (7) ŵ = 2.28 mm1
c = 10.5247 (12) ÅT = 293 K
α = 106.649 (7)°0.22 × 0.20 × 0.18 mm
β = 98.047 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1961 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.685Rint = 0.021
5150 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 0.74 e Å3
S = 1.04Δρmin = 0.50 e Å3
2104 reflectionsAbsolute structure: ?
153 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.62856 (3)0.10583 (2)0.594940 (19)0.03402 (8)
Cl10.56554 (12)0.11665 (9)0.34743 (7)0.04336 (17)
N10.7549 (3)0.0017 (3)0.8336 (2)0.0356 (5)
N20.9449 (5)0.1523 (4)0.6597 (3)0.0515 (7)
N30.2515 (4)0.6802 (3)0.4552 (3)0.0456 (6)
S10.26442 (11)0.34111 (9)0.57610 (9)0.0464 (2)
C10.6679 (4)0.0751 (4)0.9132 (3)0.0431 (7)
H10.55460.18650.87190.052*
C20.7371 (5)0.0024 (5)1.0580 (3)0.0518 (8)
H20.67100.05691.11100.062*
C30.9004 (5)0.1638 (5)1.1190 (3)0.0525 (8)
H30.94710.21721.21490.063*
C41.0010 (4)0.2524 (4)1.0383 (3)0.0425 (7)
C51.1737 (5)0.4201 (4)1.0939 (3)0.0576 (9)
H51.22590.47941.18930.069*
C61.2648 (5)0.4961 (4)1.0102 (4)0.0610 (9)
H61.37810.60771.04870.073*
C71.1906 (5)0.4087 (4)0.8661 (4)0.0526 (8)
H71.25630.46220.81010.063*
C81.0226 (4)0.2458 (4)0.8069 (3)0.0394 (6)
C90.9235 (4)0.1647 (3)0.8922 (3)0.0322 (6)
C100.2613 (4)0.5392 (4)0.5052 (3)0.0344 (6)
H8A0.925 (7)0.225 (6)0.623 (5)0.097 (16)*
H8B1.026 (8)0.108 (7)0.629 (5)0.110 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03527 (12)0.03000 (12)0.02813 (13)0.01083 (9)0.00321 (9)0.00685 (9)
Cl10.0617 (4)0.0430 (4)0.0277 (4)0.0279 (3)0.0119 (3)0.0102 (3)
N10.0353 (12)0.0390 (12)0.0320 (12)0.0179 (10)0.0070 (10)0.0116 (10)
N20.0512 (16)0.0495 (16)0.0336 (15)0.0056 (13)0.0091 (13)0.0125 (13)
N30.0408 (13)0.0354 (13)0.0548 (16)0.0181 (11)0.0078 (12)0.0098 (12)
S10.0342 (4)0.0322 (3)0.0633 (5)0.0124 (3)0.0163 (4)0.0069 (3)
C10.0396 (15)0.0500 (17)0.0483 (18)0.0219 (14)0.0149 (14)0.0263 (15)
C20.0520 (19)0.081 (2)0.0423 (19)0.0389 (19)0.0210 (16)0.0334 (18)
C30.057 (2)0.081 (2)0.0314 (16)0.047 (2)0.0127 (15)0.0168 (16)
C40.0407 (15)0.0524 (17)0.0318 (15)0.0298 (14)0.0017 (13)0.0036 (13)
C50.0508 (19)0.0547 (19)0.0415 (19)0.0243 (16)0.0083 (16)0.0088 (16)
C60.0453 (18)0.0422 (17)0.061 (2)0.0074 (15)0.0031 (17)0.0022 (16)
C70.0433 (17)0.0392 (16)0.058 (2)0.0078 (14)0.0083 (16)0.0125 (15)
C80.0376 (15)0.0378 (14)0.0349 (16)0.0146 (12)0.0050 (13)0.0082 (12)
C90.0302 (13)0.0328 (13)0.0285 (14)0.0161 (11)0.0021 (11)0.0043 (11)
C100.0237 (12)0.0378 (15)0.0366 (15)0.0096 (11)0.0064 (11)0.0137 (12)
Geometric parameters (Å, °) top
Cd1—N3i2.311 (2)C1—C21.402 (4)
Cd1—N12.322 (2)C1—H10.9300
Cd1—N22.382 (3)C2—C31.345 (5)
Cd1—Cl12.5495 (8)C2—H20.9300
Cd1—S12.6413 (8)C3—C41.408 (5)
Cd1—Cl1ii2.8088 (7)C3—H30.9300
Cl1—Cd1ii2.8088 (7)C4—C51.406 (5)
N1—C11.306 (4)C4—C91.421 (4)
N1—C91.370 (3)C5—C61.352 (5)
N2—C81.436 (4)C5—H50.9300
N2—H8A0.87 (5)C6—C71.402 (5)
N2—H8B0.88 (5)C6—H60.9300
N3—C101.147 (3)C7—C81.367 (4)
N3—Cd1i2.311 (2)C7—H70.9300
S1—C101.646 (3)C8—C91.413 (4)
N3i—Cd1—N196.56 (8)N1—C1—H1118.4
N3i—Cd1—N296.66 (11)C2—C1—H1118.4
N1—Cd1—N272.51 (9)C3—C2—C1119.0 (3)
N3i—Cd1—Cl192.72 (7)C3—C2—H2120.5
N1—Cd1—Cl1161.21 (6)C1—C2—H2120.5
N2—Cd1—Cl190.24 (7)C2—C3—C4120.3 (3)
N3i—Cd1—S194.00 (6)C2—C3—H3119.9
N1—Cd1—S197.09 (6)C4—C3—H3119.9
N2—Cd1—S1165.86 (8)C5—C4—C3123.8 (3)
Cl1—Cd1—S198.53 (3)C5—C4—C9118.6 (3)
N3i—Cd1—Cl1ii172.43 (6)C3—C4—C9117.5 (3)
N1—Cd1—Cl1ii84.41 (6)C6—C5—C4120.7 (3)
N2—Cd1—Cl1ii90.80 (10)C6—C5—H5119.6
Cl1—Cd1—Cl1ii88.55 (2)C4—C5—H5119.6
S1—Cd1—Cl1ii78.43 (2)C5—C6—C7120.8 (3)
Cd1—Cl1—Cd1ii91.45 (2)C5—C6—H6119.6
C1—N1—C9119.4 (2)C7—C6—H6119.6
C1—N1—Cd1124.5 (2)C8—C7—C6120.8 (3)
C9—N1—Cd1115.88 (17)C8—C7—H7119.6
C8—N2—Cd1112.08 (19)C6—C7—H7119.6
C8—N2—H8A109 (3)C7—C8—C9119.5 (3)
Cd1—N2—H8A107 (3)C7—C8—N2121.9 (3)
C8—N2—H8B109 (3)C9—C8—N2118.6 (2)
Cd1—N2—H8B105 (3)N1—C9—C8119.8 (2)
H8A—N2—H8B116 (4)N1—C9—C4120.6 (3)
C10—N3—Cd1i156.0 (2)C8—C9—C4119.6 (3)
C10—S1—Cd1104.03 (9)N3—C10—S1177.4 (2)
N1—C1—C2123.1 (3)
C9—N1—C1—C20.9 (4)Cd1—N2—C8—C98.6 (4)
Cd1—N1—C1—C2173.5 (2)C1—N1—C9—C8177.8 (2)
N1—C1—C2—C30.2 (5)Cd1—N1—C9—C87.3 (3)
C1—C2—C3—C40.6 (5)C1—N1—C9—C41.6 (4)
C2—C3—C4—C5179.3 (3)Cd1—N1—C9—C4173.23 (18)
C2—C3—C4—C90.1 (4)C7—C8—C9—N1179.8 (3)
C3—C4—C5—C6178.9 (3)N2—C8—C9—N11.2 (4)
C9—C4—C5—C60.2 (4)C7—C8—C9—C40.7 (4)
C4—C5—C6—C70.7 (5)N2—C8—C9—C4178.3 (3)
C5—C6—C7—C80.9 (5)C5—C4—C9—N1179.6 (3)
C6—C7—C8—C90.2 (5)C3—C4—C9—N11.2 (4)
C6—C7—C8—N2179.2 (3)C5—C4—C9—C81.0 (4)
Cd1—N2—C8—C7172.4 (2)C3—C4—C9—C8178.2 (2)
Symmetry codes: (i) −x+1, −y−1, −z+1; (ii) −x+1, −y, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1iii0.932.843.723 (4)160
Symmetry codes: (iii) x, y, z+1.
Table 1
Selected geometric parameters (Å)
top
Cd1—N3i2.311 (2)Cd1—Cl12.5495 (8)
Cd1—N12.322 (2)Cd1—S12.6413 (8)
Cd1—N22.382 (3)Cd1—Cl1ii2.8088 (7)
Symmetry codes: (i) −x+1, −y−1, −z+1; (ii) −x+1, −y, −z+1.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1iii0.932.843.723 (4)160
Symmetry codes: (iii) x, y, z+1.
Acknowledgements top

This work was supported by the Natural Science Foundation of Education Commission of Anhui Province (No. KJ2010A229)

references
References top

Bortoluzzi, M., Paolucci, G., Pitteri, B. & Vavasori, A. (2006). Inorg. Chem. Commun. 9, 1301–1303.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fritsch, J. M., Thoreson, K. A. & McNeill, K. (2006). Dalton Trans. pp. 4814–4820.

Kim, Y.-H., Youk, J.-S., Moon, S.-Y., Choe, J.-I. & Chang, S.-K. (2004). Chem. Lett. 33, 702–703.

Li, X.-G., Hua, Y.-M. & Huang, M.-R. (2005). Chem. Eur. J. 11, 4247–4256.

Macias, B., Garcia, I., Villa, M. V., Borras, J., Casiineiras, A. & Sanz, F. (2003). Z. Anorg. Allg. Chem. 629, 255–260.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tekwami, B. L. & Walker, L. A. (2006). Curr. Opin. Infect. Dis. 19, 623–631.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.