supplementary materials


wn2461 scheme

Acta Cryst. (2012). E68, o92    [ doi:10.1107/S1600536811052615 ]

2-(3-Benzoyl-4-hydroxy-1,1-dioxo-2H-1[lambda]6,2-benzothiazin-2-yl)-1-phenylethanone

N. Sattar, H. L. Siddiqui, S. I. H. Bukhari, M. Ahmad and M. Parvez

Abstract top

In the title molecule, C23H17NO5S, the heterocyclic thiazine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.383 (3) and 0.473 (3) Å, respectively, on opposite sides of the mean plane formed by the ring C atoms. The phenyl rings attached to carbonyl groups lie almost parallel to each other at a dihedral angle 7.43 (9)°, the distance between the centroids of the rings being 3.780 (1) Å. The C(thiazine)-C=O and O=C-CH2 groups make dihedral angles of 37.56 (16) and 1.93 (18)°, respectively, with the phenyl groups to which they are attached. The crystal structure features O-H...O and C-H...O hydrogen bonds and further consolidated by C-H...[pi] interactions; an intramolecular O-H...O hydrogen bond is also present.

Comment top

In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2007 and Ahmad et al., 2010), we now report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half-chair conformation with atoms S1 and N1 displaced by 0.383 (3) and 0.473 (3) Å, respectively, on opposite sides of the mean plane formed by the ring C atoms. The phenyl rings C10–C15 and C18–C23 lie almost parallel to each other, at a dihedral angle of 7.43 (9)°, the distance between the centroids of the rings being 3.780 (1) Å. The O4/C9/C8 and O5/C17/C16 groups are oriented at 37.56 (16) and 1.93 (18)°, respectively, with the phenyl rings to which they are bonded.

The crystal structure is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds and further consolidated by C—H···π-interactions (Fig. 2); an intramolecular O—H···O hydrogen bond is also present (Table 1).

Related literature top

For the biological activity of benzothiazine derivatives, see: Ahmad et al. (2010); Siddiqui et al. (2007). For related structures, see: Siddiqui et al. (2008).

Experimental top

A mixture of 3-benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide (2.5 g, 8.30 mmol) in acetone (25 ml), aqueous sodium hydroxide (0.67 g, 16.6 mmol) and 2-bromo-1-phenylethanone (1.98 g, 9.96 mmol) was subjected to ultrasonic irradiation for 20 minutes at 318 K followed by addition of HCl (5%) to maintain a pH value of 3.0. Chrome yellow precipitates of the title compound were formed, which were collected and washed with excess distilled water. Crystals suitable for crystallographic study were grown from methanol at room temperature. Yield = 3.1 g, 89.08%; m.p. = 451 - 453 K.

Refinement top

Though all the H atoms could be located in the difference Fourier map the they were included at geometrically idealized positions and refined in the riding-model approximation with the following constraints: O—H = 0.84, C—H = 0.95 and 0.99 Å for Csp2—H and C(methylene)—H, respectively; Uiso(H) = 1.2Ueq(C,O). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with displacement ellipsoids plotted at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A unit cell packing diagram of the title compound showing hydrogen bonds and C—H···π-interactions drawn as dashed lines. Hydrogen atoms not involved in H-bonds have been excluded for clarity.
2-(3-Benzoyl-4-hydroxy-1,1-dioxo-2H-1λ6,2-benzothiazin-2-yl)- 1-phenylethanone top
Crystal data top
C23H17NO5SZ = 2
Mr = 419.44F(000) = 436
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5458 (2) ÅCell parameters from 4252 reflections
b = 10.9169 (4) Åθ = 1.0–27.5°
c = 12.0924 (4) ŵ = 0.21 mm1
α = 101.920 (2)°T = 173 K
β = 101.423 (2)°Block, yellow
γ = 90.484 (2)°0.24 × 0.14 × 0.12 mm
V = 954.08 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube3706 reflections with I > 2σ(I)
graphiteRint = 0.026
ω and φ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.952, Tmax = 0.976k = 1414
8312 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.6186P]
where P = (Fo2 + 2Fc2)/3
4362 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C23H17NO5Sγ = 90.484 (2)°
Mr = 419.44V = 954.08 (5) Å3
Triclinic, P1Z = 2
a = 7.5458 (2) ÅMo Kα radiation
b = 10.9169 (4) ŵ = 0.21 mm1
c = 12.0924 (4) ÅT = 173 K
α = 101.920 (2)°0.24 × 0.14 × 0.12 mm
β = 101.423 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4362 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3706 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.976Rint = 0.026
8312 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.27 e Å3
S = 1.07Δρmin = 0.37 e Å3
4362 reflectionsAbsolute structure: ?
272 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34149 (7)0.18920 (4)0.12065 (4)0.03505 (13)
O10.1720 (2)0.14634 (15)0.07084 (12)0.0479 (4)
O20.4317 (2)0.27840 (14)0.05051 (12)0.0515 (4)
O30.2650 (2)0.04686 (11)0.43060 (11)0.0393 (3)
H3O0.18410.01500.45610.047*
O40.03228 (19)0.11927 (12)0.43691 (12)0.0417 (3)
O50.3911 (2)0.37516 (13)0.44672 (11)0.0434 (3)
N10.31001 (19)0.24683 (13)0.23118 (12)0.0282 (3)
C10.4892 (2)0.05913 (16)0.19162 (15)0.0321 (4)
C20.6247 (3)0.02094 (19)0.14220 (17)0.0416 (5)
H20.64240.06600.06950.050*
C30.7341 (3)0.0844 (2)0.20105 (19)0.0490 (5)
H30.82730.11230.16820.059*
C40.7082 (3)0.14888 (19)0.30697 (18)0.0442 (5)
H40.78480.22050.34670.053*
C50.5726 (3)0.11088 (16)0.35621 (16)0.0360 (4)
H50.55530.15680.42870.043*
C60.4613 (2)0.00504 (15)0.29926 (14)0.0289 (4)
C70.3151 (2)0.03730 (15)0.35027 (14)0.0284 (4)
C80.2340 (2)0.15732 (15)0.31233 (14)0.0270 (3)
C90.0816 (2)0.19319 (16)0.35527 (15)0.0299 (4)
C100.0199 (2)0.31649 (16)0.30855 (15)0.0285 (3)
C110.0556 (2)0.37228 (18)0.19143 (16)0.0335 (4)
H110.01370.33180.13830.040*
C120.1522 (2)0.48683 (18)0.15228 (17)0.0383 (4)
H120.17800.52400.07220.046*
C130.2109 (2)0.54715 (18)0.22929 (18)0.0377 (4)
H130.27420.62670.20240.045*
C140.1775 (3)0.49171 (18)0.34562 (17)0.0374 (4)
H140.21920.53280.39830.045*
C150.0836 (2)0.37660 (17)0.38541 (16)0.0326 (4)
H150.06230.33840.46520.039*
C160.4658 (2)0.31090 (16)0.28640 (17)0.0344 (4)
H16A0.55080.24880.34430.041*
H16B0.53160.35370.22740.041*
C170.3936 (2)0.40619 (16)0.34464 (15)0.0311 (4)
C180.3239 (2)0.53246 (16)0.27569 (15)0.0284 (4)
C190.3222 (2)0.56942 (17)0.15799 (16)0.0345 (4)
H190.36790.51310.11880.041*
C200.2540 (3)0.68798 (19)0.09805 (17)0.0397 (4)
H200.25310.71280.01790.048*
C210.1876 (3)0.76998 (18)0.15442 (18)0.0414 (5)
H210.14030.85100.11290.050*
C220.1894 (3)0.73471 (18)0.27146 (18)0.0398 (4)
H220.14390.79150.31030.048*
C230.2577 (2)0.61663 (17)0.33150 (16)0.0345 (4)
H230.25940.59270.41180.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0427 (3)0.0347 (2)0.0262 (2)0.01221 (19)0.01089 (18)0.00028 (17)
O10.0480 (8)0.0589 (9)0.0339 (7)0.0119 (7)0.0025 (6)0.0141 (7)
O20.0661 (10)0.0448 (8)0.0429 (8)0.0181 (7)0.0321 (7)0.0112 (6)
O30.0554 (9)0.0261 (6)0.0396 (7)0.0039 (6)0.0237 (6)0.0008 (5)
O40.0470 (8)0.0337 (7)0.0467 (8)0.0002 (6)0.0265 (6)0.0024 (6)
O50.0555 (9)0.0369 (7)0.0334 (7)0.0010 (6)0.0065 (6)0.0000 (6)
N10.0310 (7)0.0238 (7)0.0303 (7)0.0026 (6)0.0123 (6)0.0015 (6)
C10.0388 (9)0.0280 (9)0.0287 (8)0.0073 (7)0.0077 (7)0.0037 (7)
C20.0474 (11)0.0401 (11)0.0390 (10)0.0107 (9)0.0180 (9)0.0043 (8)
C30.0497 (12)0.0487 (12)0.0508 (12)0.0194 (10)0.0169 (10)0.0100 (10)
C40.0491 (12)0.0352 (10)0.0451 (11)0.0170 (9)0.0047 (9)0.0064 (9)
C50.0478 (11)0.0262 (9)0.0319 (9)0.0061 (8)0.0052 (8)0.0045 (7)
C60.0361 (9)0.0236 (8)0.0275 (8)0.0019 (7)0.0060 (7)0.0075 (6)
C70.0364 (9)0.0241 (8)0.0264 (8)0.0018 (7)0.0094 (7)0.0060 (6)
C80.0310 (8)0.0243 (8)0.0265 (8)0.0004 (7)0.0092 (7)0.0043 (6)
C90.0316 (9)0.0273 (8)0.0312 (9)0.0030 (7)0.0083 (7)0.0056 (7)
C100.0245 (8)0.0272 (8)0.0344 (9)0.0012 (6)0.0086 (7)0.0056 (7)
C110.0295 (9)0.0384 (10)0.0326 (9)0.0041 (7)0.0067 (7)0.0072 (7)
C120.0328 (9)0.0411 (11)0.0361 (10)0.0051 (8)0.0035 (8)0.0007 (8)
C130.0310 (9)0.0298 (9)0.0513 (11)0.0022 (7)0.0082 (8)0.0066 (8)
C140.0369 (10)0.0345 (10)0.0460 (11)0.0003 (8)0.0142 (8)0.0151 (8)
C150.0316 (9)0.0343 (9)0.0338 (9)0.0009 (7)0.0115 (7)0.0070 (7)
C160.0293 (9)0.0271 (9)0.0462 (10)0.0002 (7)0.0117 (8)0.0023 (8)
C170.0278 (8)0.0286 (9)0.0347 (9)0.0049 (7)0.0042 (7)0.0042 (7)
C180.0264 (8)0.0261 (8)0.0326 (9)0.0031 (6)0.0058 (7)0.0058 (7)
C190.0364 (9)0.0333 (9)0.0348 (9)0.0006 (7)0.0105 (8)0.0066 (7)
C200.0420 (11)0.0390 (10)0.0340 (10)0.0011 (8)0.0074 (8)0.0010 (8)
C210.0365 (10)0.0301 (9)0.0519 (12)0.0016 (8)0.0047 (9)0.0006 (8)
C220.0389 (10)0.0318 (10)0.0507 (12)0.0019 (8)0.0084 (9)0.0137 (9)
C230.0361 (9)0.0359 (10)0.0332 (9)0.0030 (8)0.0075 (8)0.0109 (8)
Geometric parameters (Å, °) top
S1—O21.4249 (15)C10—C151.396 (2)
S1—O11.4281 (16)C11—C121.386 (2)
S1—N11.6460 (15)C11—H110.9500
S1—C11.7566 (17)C12—C131.382 (3)
O3—C71.309 (2)C12—H120.9500
O3—H3O0.8400C13—C141.383 (3)
O4—C91.259 (2)C13—H130.9500
O5—C171.215 (2)C14—C151.383 (3)
N1—C81.443 (2)C14—H140.9500
N1—C161.488 (2)C15—H150.9500
C1—C21.384 (2)C16—C171.523 (3)
C1—C61.401 (2)C16—H16A0.9900
C2—C31.387 (3)C16—H16B0.9900
C2—H20.9500C17—C181.487 (2)
C3—C41.379 (3)C18—C231.390 (2)
C3—H30.9500C18—C191.394 (2)
C4—C51.382 (3)C19—C201.385 (3)
C4—H40.9500C19—H190.9500
C5—C61.393 (2)C20—C211.378 (3)
C5—H50.9500C20—H200.9500
C6—C71.479 (2)C21—C221.385 (3)
C7—C81.389 (2)C21—H210.9500
C8—C91.434 (2)C22—C231.381 (3)
C9—C101.488 (2)C22—H220.9500
C10—C111.392 (2)C23—H230.9500
O2—S1—O1119.49 (10)C12—C11—H11120.0
O2—S1—N1108.46 (9)C10—C11—H11120.0
O1—S1—N1107.29 (8)C13—C12—C11120.28 (18)
O2—S1—C1110.05 (9)C13—C12—H12119.9
O1—S1—C1109.15 (9)C11—C12—H12119.9
N1—S1—C1100.71 (8)C12—C13—C14119.98 (17)
C7—O3—H3O109.5C12—C13—H13120.0
C8—N1—C16113.65 (14)C14—C13—H13120.0
C8—N1—S1111.94 (11)C13—C14—C15120.22 (17)
C16—N1—S1115.61 (11)C13—C14—H14119.9
C2—C1—C6121.76 (16)C15—C14—H14119.9
C2—C1—S1121.28 (14)C14—C15—C10120.14 (17)
C6—C1—S1116.95 (13)C14—C15—H15119.9
C1—C2—C3118.64 (18)C10—C15—H15119.9
C1—C2—H2120.7N1—C16—C17108.46 (14)
C3—C2—H2120.7N1—C16—H16A110.0
C4—C3—C2120.36 (18)C17—C16—H16A110.0
C4—C3—H3119.8N1—C16—H16B110.0
C2—C3—H3119.8C17—C16—H16B110.0
C3—C4—C5120.99 (17)H16A—C16—H16B108.4
C3—C4—H4119.5O5—C17—C18121.73 (17)
C5—C4—H4119.5O5—C17—C16118.41 (16)
C4—C5—C6119.86 (17)C18—C17—C16119.84 (15)
C4—C5—H5120.1C23—C18—C19118.96 (16)
C6—C5—H5120.1C23—C18—C17118.26 (16)
C5—C6—C1118.39 (16)C19—C18—C17122.78 (16)
C5—C6—C7120.79 (16)C20—C19—C18120.18 (17)
C1—C6—C7120.81 (15)C20—C19—H19119.9
O3—C7—C8122.77 (15)C18—C19—H19119.9
O3—C7—C6115.46 (14)C21—C20—C19120.17 (18)
C8—C7—C6121.75 (15)C21—C20—H20119.9
C7—C8—C9121.00 (15)C19—C20—H20119.9
C7—C8—N1118.45 (14)C20—C21—C22120.25 (18)
C9—C8—N1120.52 (14)C20—C21—H21119.9
O4—C9—C8119.42 (15)C22—C21—H21119.9
O4—C9—C10118.06 (15)C23—C22—C21119.70 (18)
C8—C9—C10122.51 (15)C23—C22—H22120.2
C11—C10—C15119.30 (16)C21—C22—H22120.2
C11—C10—C9122.38 (16)C22—C23—C18120.75 (17)
C15—C10—C9118.31 (15)C22—C23—H23119.6
C12—C11—C10120.05 (17)C18—C23—H23119.6
O2—S1—N1—C8174.71 (11)S1—N1—C8—C9132.02 (14)
O1—S1—N1—C854.93 (13)C7—C8—C9—O47.3 (3)
C1—S1—N1—C859.18 (13)N1—C8—C9—O4170.73 (16)
O2—S1—N1—C1642.43 (14)C7—C8—C9—C10173.95 (16)
O1—S1—N1—C16172.79 (12)N1—C8—C9—C108.0 (3)
C1—S1—N1—C1673.10 (13)O4—C9—C10—C11142.68 (18)
O2—S1—C1—C230.8 (2)C8—C9—C10—C1138.5 (3)
O1—S1—C1—C2102.15 (18)O4—C9—C10—C1536.2 (2)
N1—S1—C1—C2145.15 (17)C8—C9—C10—C15142.54 (18)
O2—S1—C1—C6150.24 (15)C15—C10—C11—C120.5 (3)
O1—S1—C1—C676.79 (16)C9—C10—C11—C12179.43 (17)
N1—S1—C1—C635.90 (16)C10—C11—C12—C131.0 (3)
C6—C1—C2—C30.6 (3)C11—C12—C13—C141.7 (3)
S1—C1—C2—C3178.33 (17)C12—C13—C14—C150.7 (3)
C1—C2—C3—C40.4 (3)C13—C14—C15—C100.8 (3)
C2—C3—C4—C50.5 (4)C11—C10—C15—C141.5 (3)
C3—C4—C5—C60.8 (3)C9—C10—C15—C14179.59 (16)
C4—C5—C6—C11.0 (3)C8—N1—C16—C1774.17 (17)
C4—C5—C6—C7179.94 (18)S1—N1—C16—C17154.35 (12)
C2—C1—C6—C50.9 (3)N1—C16—C17—O595.19 (19)
S1—C1—C6—C5178.09 (14)N1—C16—C17—C1883.21 (18)
C2—C1—C6—C7179.81 (18)O5—C17—C18—C231.1 (3)
S1—C1—C6—C70.9 (2)C16—C17—C18—C23179.48 (16)
C5—C6—C7—O318.8 (2)O5—C17—C18—C19178.78 (18)
C1—C6—C7—O3160.17 (17)C16—C17—C18—C190.4 (3)
C5—C6—C7—C8163.06 (17)C23—C18—C19—C200.5 (3)
C1—C6—C7—C818.0 (3)C17—C18—C19—C20179.41 (17)
O3—C7—C8—C93.8 (3)C18—C19—C20—C210.0 (3)
C6—C7—C8—C9174.28 (16)C19—C20—C21—C220.4 (3)
O3—C7—C8—N1174.30 (16)C20—C21—C22—C230.2 (3)
C6—C7—C8—N17.7 (2)C21—C22—C23—C180.3 (3)
C16—N1—C8—C783.33 (19)C19—C18—C23—C220.7 (3)
S1—N1—C8—C749.91 (19)C17—C18—C23—C22179.26 (17)
C16—N1—C8—C994.73 (18)
Hydrogen-bond geometry (Å, °) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.842.433.026 (2)129
C5—H5···O5ii0.952.523.311 (2)140
C22—H22···O3iii0.952.573.346 (2)139
O3—H3O···O40.841.802.537 (2)146
C16—H16B···Cg1iv0.992.783.455 (2)126
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y−1, z; (iv) x+1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.842.433.026 (2)129
C5—H5···O5ii0.952.523.311 (2)140
C22—H22···O3iii0.952.573.346 (2)139
O3—H3O···O40.841.802.537 (2)146
C16—H16B···Cg1iv0.992.783.455 (2)126
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y−1, z; (iv) x+1, y, z.
Acknowledgements top

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

references
References top

Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.

Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.