supplementary materials


xu5406 scheme

Acta Cryst. (2012). E68, o139-o140    [ doi:10.1107/S1600536811053104 ]

1-[2-(2,4-Dichlorobenzyloxy)-2-(furan-2-yl)ethyl]-1H-benzotriazole

Ö. Özel Güven, M. Bayraktar, S. J. Coles and T. Hökelek

Abstract top

In the title compound, C19H15Cl2N3O2, the benzotriazole ring system is approximately planar [maximum deviation = 0.018 (2) Å] and its mean plane is oriented at dihedral angles of 30.70 (5) and 87.38 (4)°, respectively, to the furan and benzene rings while the dihedral angle between furan and benzene rings is 74.46 (6)°. In the crystal, weak C-H...N hydrogen bonds link the molecules into chains along the b axis. [pi]-[pi] stacking interactions between the parallel dichlorobenzene rings of adjacent molecules [centroid-centroid distance = 3.6847 (9) Å] and weak C-H...[pi] interactions are also observed.

Comment top

In recent years, there has been increasing interest in syntheses of heterocyclic compounds that have biological and commercial importance. Miconazole and econazole have been developed for clinical uses as antifungal agents. Similar structures containing benzimidazole ring in place of imidazole ring of miconazole and econazole have been reported showing more antibacterial activity than antifungal activity (Özel Güven et al., 2007a,b). Benzotriazole derivatives also exhibit a good degree of analgesic, anti-inflammatory, diuretic, antiviral and antihypertensive activities (Hirokawa et al., 1998; Yu et al., 2003; Kopanska et al., 2004). The crystal structures of miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) and similar ether compounds (Özel Güven et al., 2008; Özel Güven et al., 2009; Özel Güven et al., 2010a,b; Özel Güven et al., 2011) have been reported, previously. Now, we report herein the crystal structure of a new benzotriazole derivative, (I).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The benzotriazole [B (N1-N3/C7-C12)] ring system is approximately planar with a maximum deviation of 0.018 (2) Å for atom C9 and its mean plane is oriented with respect to the furan [A (O2/C2-C5)] and benzene [C (C14-C19)] rings at dihedral angles of A/B = 30.70 (5) and B/C = 87.38 (4) °. The dihedral angle between furan and benzene rings is A/C = 74.46 (6)°. Atom C6 is -0.033 (2) Å away from the plane of the benzotriazole ring and atom C1 is 0.050 (2) Å away from the plane of the furan ring, while atoms Cl1, Cl2, O1 and C13 are 0.0309 (5), 0.0223 (5), 0.0817 (11) and 0.0195 (18) Å away from the plane of the benzene ring, respectively.

In the crystal, weak C—H···N hydrogen bonds (Table 1) link the molecules into chains along the b-axis (Fig. 2). There also exists a ππ contact between the benzene rings, Cg4—Cg4i, may further stabilize the structure [centroid-centroid distance = 3.685 (1) Å; symmetry code: (i) 2 - x, -y, -z; Cg4 is the centroid of the ring C (C14-C19)]. A weak C—H···π interaction (Table 1) may stabilize the structure.

Related literature top

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004); Özel Güven et al. (2007a,b); Peeters et al. (1979); Freer et al. (1986). For related structures, see: Özel Güven et al. (2008, 2009, 2010a,b, 2011. For the synthesis of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanol, see: Özel Güven et al. (2012).

Experimental top

The title compound, (I), was synthesized by the reaction of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanol (Özel Güven et al., 2012) with aryl halide using NaH. 2-(1H-Benzotriazol-1-yl)-1-(furan-2-yl)ethanol (219 mg, 0.95 mmol) was dissolved in DMF (4 ml). NaH (38 mg, 0.96 mmol) was added to the solution portionwise. After stirring the mixture a few minutes, 2,4-dichlorobenzyl bromide (229 mg, 0.95 mmol) was added dropwise. Then, the reaction mixture was stirred additional 3 h at room temperature. Adding methanol (5 ml), the reaction was stopped. After evaporation of the solvent, dichloromethane was added to the reaction mixture and extracted with water. Then, the organic phase was separated, dried, filtered and evaporated. The precipitate formed was purified by column chromatography using chloroform and crystallized from 2-propanol to obtain colorless crystals suitable for X-ray analysis (yield; 295 mg, 80%).

Refinement top

H atoms were positioned geometrically with C—H = 0.98, 0.93 and 0.97 Å for methine, aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
1-[2-(2,4-Dichlorobenzyloxy)-2-(furan-2-yl)ethyl]-1H-benzotriazole top
Crystal data top
C19H15Cl2N3O2F(000) = 800
Mr = 388.24Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11553 reflections
a = 11.5452 (2) Åθ = 2.9–27.5°
b = 20.0350 (5) ŵ = 0.37 mm1
c = 8.3317 (2) ÅT = 120 K
β = 105.598 (2)°Slab, colorless
V = 1856.21 (7) Å30.50 × 0.30 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4251 independent reflections
Radiation source: fine-focus sealed tube3252 reflections with I > 2σ(I)
graphiteRint = 0.061
φ and ω scansθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1414
Tmin = 0.837, Tmax = 0.971k = 2626
31461 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.507P]
where P = (Fo2 + 2Fc2)/3
4251 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H15Cl2N3O2V = 1856.21 (7) Å3
Mr = 388.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5452 (2) ŵ = 0.37 mm1
b = 20.0350 (5) ÅT = 120 K
c = 8.3317 (2) Å0.50 × 0.30 × 0.08 mm
β = 105.598 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4251 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3252 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.971Rint = 0.061
31461 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.23 e Å3
S = 1.04Δρmin = 0.34 e Å3
4251 reflectionsAbsolute structure: ?
235 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89226 (4)0.18886 (2)0.01379 (7)0.04089 (16)
Cl21.28141 (4)0.02933 (3)0.12097 (6)0.03513 (14)
O10.75307 (10)0.03838 (5)0.30260 (14)0.0220 (3)
O20.66612 (11)0.09918 (6)0.57356 (14)0.0268 (3)
N10.60882 (12)0.07713 (7)0.26337 (16)0.0203 (3)
N20.51947 (12)0.09229 (7)0.12492 (17)0.0243 (3)
N30.55075 (13)0.14513 (7)0.05429 (18)0.0256 (3)
C10.62928 (14)0.04521 (8)0.3022 (2)0.0207 (3)
H10.58060.05180.18730.025*
C20.60997 (14)0.10283 (8)0.4057 (2)0.0210 (3)
C30.63944 (16)0.15769 (9)0.6416 (2)0.0291 (4)
H30.66600.16870.75400.035*
C40.57008 (18)0.19676 (9)0.5242 (2)0.0335 (4)
H40.54070.23880.53950.040*
C50.55017 (17)0.16100 (9)0.3709 (2)0.0320 (4)
H50.50460.17520.26680.038*
C60.59430 (14)0.02090 (8)0.3666 (2)0.0209 (3)
H6A0.64370.02810.47940.025*
H6B0.51110.01860.37010.025*
C70.70139 (14)0.12118 (8)0.28229 (19)0.0190 (3)
C80.81400 (14)0.12713 (8)0.3997 (2)0.0227 (3)
H80.83860.09800.48940.027*
C90.88576 (16)0.17884 (8)0.3736 (2)0.0258 (4)
H90.96160.18430.44700.031*
C100.84755 (16)0.22394 (8)0.2385 (2)0.0275 (4)
H100.89860.25840.22650.033*
C110.73701 (16)0.21804 (8)0.1249 (2)0.0266 (4)
H110.71210.24780.03670.032*
C120.66331 (15)0.16504 (8)0.1477 (2)0.0214 (3)
C130.79095 (15)0.09078 (8)0.2133 (2)0.0251 (4)
H13A0.79330.13260.27290.030*
H13B0.73450.09560.10430.030*
C140.91411 (14)0.07481 (8)0.1944 (2)0.0207 (3)
C150.96919 (15)0.11711 (8)0.1043 (2)0.0250 (4)
C161.08124 (15)0.10456 (9)0.0812 (2)0.0269 (4)
H161.11580.13380.02070.032*
C171.14060 (14)0.04695 (9)0.1510 (2)0.0242 (4)
C181.09010 (15)0.00307 (8)0.2414 (2)0.0238 (4)
H181.13090.03540.28740.029*
C190.97711 (15)0.01756 (8)0.2619 (2)0.0228 (4)
H190.94270.01180.32230.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0253 (3)0.0312 (3)0.0594 (3)0.00467 (18)0.0003 (2)0.0213 (2)
Cl20.0204 (2)0.0536 (3)0.0334 (3)0.00010 (18)0.01082 (18)0.0020 (2)
O10.0185 (6)0.0211 (6)0.0288 (6)0.0031 (4)0.0106 (5)0.0030 (5)
O20.0287 (7)0.0240 (6)0.0246 (6)0.0066 (5)0.0017 (5)0.0029 (5)
N10.0196 (7)0.0203 (7)0.0211 (7)0.0007 (5)0.0057 (5)0.0026 (5)
N20.0227 (7)0.0253 (7)0.0242 (7)0.0021 (6)0.0053 (6)0.0028 (6)
N30.0268 (8)0.0248 (7)0.0251 (8)0.0028 (6)0.0070 (6)0.0032 (6)
C10.0183 (8)0.0209 (8)0.0231 (8)0.0027 (6)0.0061 (6)0.0021 (7)
C20.0182 (8)0.0234 (8)0.0207 (8)0.0019 (6)0.0043 (6)0.0007 (7)
C30.0329 (10)0.0261 (9)0.0274 (9)0.0007 (7)0.0066 (8)0.0091 (7)
C40.0404 (11)0.0246 (9)0.0357 (11)0.0114 (8)0.0107 (9)0.0035 (8)
C50.0408 (11)0.0299 (10)0.0229 (9)0.0132 (8)0.0041 (8)0.0007 (8)
C60.0209 (8)0.0208 (8)0.0228 (8)0.0010 (6)0.0092 (6)0.0038 (7)
C70.0219 (8)0.0166 (8)0.0205 (8)0.0010 (6)0.0093 (6)0.0019 (6)
C80.0240 (9)0.0208 (8)0.0228 (8)0.0010 (6)0.0057 (7)0.0001 (7)
C90.0243 (9)0.0244 (9)0.0290 (9)0.0029 (7)0.0073 (7)0.0045 (7)
C100.0328 (10)0.0222 (9)0.0310 (10)0.0056 (7)0.0147 (8)0.0033 (7)
C110.0363 (10)0.0190 (8)0.0274 (9)0.0010 (7)0.0136 (8)0.0027 (7)
C120.0246 (9)0.0196 (8)0.0211 (8)0.0030 (6)0.0079 (7)0.0011 (7)
C130.0263 (9)0.0172 (8)0.0336 (10)0.0007 (6)0.0112 (7)0.0038 (7)
C140.0199 (8)0.0186 (8)0.0231 (8)0.0032 (6)0.0047 (6)0.0034 (6)
C150.0224 (9)0.0235 (9)0.0260 (9)0.0042 (7)0.0010 (7)0.0037 (7)
C160.0229 (9)0.0326 (9)0.0251 (9)0.0103 (7)0.0060 (7)0.0035 (7)
C170.0179 (8)0.0336 (9)0.0211 (8)0.0049 (7)0.0054 (6)0.0052 (7)
C180.0226 (8)0.0238 (8)0.0249 (9)0.0004 (7)0.0063 (7)0.0022 (7)
C190.0234 (9)0.0203 (8)0.0254 (9)0.0016 (6)0.0077 (7)0.0017 (7)
Geometric parameters (Å, °) top
Cl1—C151.7504 (17)C7—C81.406 (2)
Cl2—C171.7461 (17)C7—C121.399 (2)
O1—C11.4348 (18)C8—C91.380 (2)
O1—C131.4220 (19)C8—H80.9300
O2—C21.376 (2)C9—H90.9300
O2—C31.373 (2)C10—C91.418 (3)
N1—C61.454 (2)C10—H100.9300
N1—C71.362 (2)C11—C101.375 (2)
N2—N11.3591 (18)C11—H110.9300
N2—N31.3084 (19)C12—C111.405 (2)
N3—C121.382 (2)C13—H13A0.9700
C1—C21.493 (2)C13—H13B0.9700
C1—C61.524 (2)C14—C131.506 (2)
C1—H10.9800C14—C151.394 (2)
C2—C51.346 (2)C14—C191.393 (2)
C3—C41.338 (3)C15—C161.381 (2)
C3—H30.9300C16—H160.9300
C4—H40.9300C17—C161.388 (2)
C5—C41.429 (3)C17—C181.384 (2)
C5—H50.9300C18—H180.9300
C6—H6A0.9700C19—C181.391 (2)
C6—H6B0.9700C19—H190.9300
C13—O1—C1112.00 (12)C8—C9—C10122.12 (17)
C3—O2—C2106.11 (13)C8—C9—H9118.9
N2—N1—C6119.55 (13)C10—C9—H9118.9
N2—N1—C7110.26 (13)C9—C10—H10119.2
C7—N1—C6130.18 (13)C11—C10—C9121.67 (16)
N3—N2—N1108.92 (13)C11—C10—H10119.2
N2—N3—C12108.15 (13)C10—C11—C12117.10 (16)
O1—C1—C2112.06 (13)C10—C11—H11121.4
O1—C1—C6105.93 (12)C12—C11—H11121.4
O1—C1—H1108.9N3—C12—C7108.39 (14)
C2—C1—C6111.94 (13)N3—C12—C11130.82 (15)
C2—C1—H1108.9C7—C12—C11120.78 (15)
C6—C1—H1108.9O1—C13—C14109.25 (13)
O2—C2—C1116.31 (13)O1—C13—H13A109.8
C5—C2—O2109.84 (14)O1—C13—H13B109.8
C5—C2—C1133.82 (16)C14—C13—H13A109.8
O2—C3—H3124.6C14—C13—H13B109.8
C4—C3—O2110.77 (16)H13A—C13—H13B108.3
C4—C3—H3124.6C15—C14—C13120.49 (15)
C3—C4—C5106.32 (15)C19—C14—C13122.53 (15)
C3—C4—H4126.8C19—C14—C15116.98 (15)
C5—C4—H4126.8C14—C15—Cl1118.63 (13)
C2—C5—C4106.96 (16)C16—C15—Cl1118.37 (13)
C2—C5—H5126.5C16—C15—C14122.99 (16)
C4—C5—H5126.5C15—C16—C17117.93 (15)
N1—C6—C1112.43 (13)C15—C16—H16121.0
N1—C6—H6A109.1C17—C16—H16121.0
N1—C6—H6B109.1C16—C17—Cl2118.82 (13)
C1—C6—H6A109.1C18—C17—Cl2119.61 (14)
C1—C6—H6B109.1C18—C17—C16121.57 (16)
H6A—C6—H6B107.9C17—C18—C19118.72 (16)
N1—C7—C12104.27 (14)C17—C18—H18120.6
N1—C7—C8133.26 (15)C19—C18—H18120.6
C12—C7—C8122.47 (15)C14—C19—H19119.1
C7—C8—H8122.1C18—C19—C14121.81 (16)
C9—C8—C7115.84 (15)C18—C19—H19119.1
C9—C8—H8122.1
C13—O1—C1—C269.97 (17)N1—C7—C12—N30.40 (17)
C13—O1—C1—C6167.70 (13)N1—C7—C8—C9178.39 (17)
C1—O1—C13—C14170.80 (13)C12—C7—C8—C90.5 (2)
C3—O2—C2—C1177.97 (14)N1—C7—C12—C11179.67 (15)
C3—O2—C2—C50.38 (19)C8—C7—C12—N3178.76 (14)
C2—O2—C3—C40.0 (2)C8—C7—C12—C110.5 (2)
N2—N1—C6—C184.26 (17)C7—C8—C9—C101.1 (2)
C7—N1—C6—C196.81 (19)C11—C10—C9—C80.7 (3)
N2—N1—C7—C8178.45 (16)C12—C11—C10—C90.3 (2)
N2—N1—C7—C120.58 (17)N3—C12—C11—C10178.19 (16)
C6—N1—C7—C82.5 (3)C7—C12—C11—C100.9 (2)
C6—N1—C7—C12178.42 (15)C15—C14—C13—O1177.03 (15)
N3—N2—N1—C6178.57 (13)C19—C14—C13—O11.8 (2)
N3—N2—N1—C70.56 (17)C13—C14—C15—Cl10.1 (2)
N1—N2—N3—C120.28 (17)C13—C14—C15—C16179.17 (16)
N2—N3—C12—C70.08 (18)C19—C14—C15—Cl1178.80 (13)
N2—N3—C12—C11179.25 (17)C19—C14—C15—C160.3 (3)
O1—C1—C2—O263.48 (18)C13—C14—C19—C18179.09 (15)
O1—C1—C2—C5114.4 (2)C15—C14—C19—C180.2 (2)
C6—C1—C2—O255.36 (18)Cl1—C15—C16—C17178.90 (13)
C6—C1—C2—C5126.8 (2)C14—C15—C16—C170.2 (3)
O1—C1—C6—N159.57 (16)Cl2—C17—C16—C15179.06 (13)
C2—C1—C6—N1178.02 (13)C18—C17—C16—C150.0 (3)
O2—C2—C5—C40.6 (2)Cl2—C17—C18—C19179.11 (12)
C1—C2—C5—C4177.35 (18)C16—C17—C18—C190.0 (3)
O2—C3—C4—C50.4 (2)C14—C19—C18—C170.1 (3)
C2—C5—C4—C30.6 (2)
Hydrogen-bond geometry (Å, °) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.932.593.452 (2)155
C8—H8···Cgii0.932.923.782 (2)155
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.932.593.452 (2)155
C8—H8···Cgii0.932.923.782 (2)155
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y, −z+1.
Acknowledgements top

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2010-13-02-05).

references
References top

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.

Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973–1978.

Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010b). Acta Cryst. E66, o1246–o1247.

Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2011). Acta Cryst. E67, o3177–o3178.

Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2012). Acta Cryst. E68, o72.

Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1437.

Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.

Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.

Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2009). Acta Cryst. E65, o2868–o2869.

Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2010a). Acta Cryst. E66, o107–o108.

Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.