organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2-Methyl­amino-1,2-di­phenyl­ethanol

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 January 2012; accepted 16 January 2012; online 21 January 2012)

The dihedral angle between the two phenyl rings in the title compound, C15H17NO, is 52.9 (1)°. In the crystal, the mol­ecules are connected by O—H⋯N hydrogen bonds into centrosymmetric dimers. The amino H atom is not involved in hydrogen bonding.

Related literature

For the use of chiral 2-(2-methyl­amino)-1,2-diphenyl­ethan-1-ol in organic synthesis, see: Gamsey et al. (2004[Gamsey, S., Torre, K. D. & SIngaram, B. (2004). Tetrahedron Asymmetry, 16, 711-715.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO

  • Mr = 227.30

  • Monoclinic, C 2/c

  • a = 27.4279 (7) Å

  • b = 5.69216 (11) Å

  • c = 17.1910 (5) Å

  • β = 116.223 (3)°

  • V = 2407.69 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.838, Tmax = 0.942

  • 4176 measured reflections

  • 2373 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.03

  • 2373 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1i 0.92 (2) 1.88 (2) 2.799 (1) 172 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Optically active 2-(2-methylamino)-1,2-diphenylethanol is used in asymmetric synthesis, e.g., the asymmetric hydrogenation of chiral vinyloxazaboralidines (Gamsey et al., 2004). The unsubstitued homolog is used for the palladium-assisted chiral tandem alkylation and carbonylative coupling reactions. The crystal structure of the racemic 2-(metahylamino)-1,2-diphenylethanol (Scheme I) is presented here.

The aromatic rings of the ethyl chain are staggered, the twist being 52.9 (1) °. The hydroxy group is hydrogen-bond donor to the amino group of an adjacent molecule; the amino group is hydrogen-bond donor to the hydroxy group of another molecule. The hydrogen bonds generate a linear chain running along [0 1 0] (Table 1).

Related literature top

For the use of chiral 2-(2-methylamino)-1,2-diphenylethan-1-ol in organic synthesis, see: Gamsey et al. (2004).

Experimental top

The compound was obtained commercially, and crystals were grown from its solution in ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 1.0 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C15H17NO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
rac-2-Methylamino-1,2-diphenylethanol top
Crystal data top
C15H17NOF(000) = 976
Mr = 227.30Dx = 1.254 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 2861 reflections
a = 27.4279 (7) Åθ = 2.9–74.3°
b = 5.69216 (11) ŵ = 0.61 mm1
c = 17.1910 (5) ÅT = 100 K
β = 116.223 (3)°Prism, colorless
V = 2407.69 (10) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2373 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2197 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 3.6°
ω scanh = 2634
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 64
Tmin = 0.838, Tmax = 0.942l = 1921
4176 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0476P)2 + 1.6566P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2373 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (2)
Crystal data top
C15H17NOV = 2407.69 (10) Å3
Mr = 227.30Z = 8
Monoclinic, C2/cCu Kα radiation
a = 27.4279 (7) ŵ = 0.61 mm1
b = 5.69216 (11) ÅT = 100 K
c = 17.1910 (5) Å0.30 × 0.20 × 0.10 mm
β = 116.223 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2373 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2197 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.942Rint = 0.014
4176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
2373 reflectionsΔρmin = 0.22 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56414 (3)0.35675 (13)0.57996 (5)0.0187 (2)
N10.49951 (4)0.73117 (17)0.59666 (6)0.0174 (2)
C10.57758 (4)0.59658 (19)0.57561 (7)0.0159 (2)
H10.55640.64910.51420.019*
C20.55920 (4)0.74825 (18)0.63208 (7)0.0152 (2)
H20.56790.91510.62500.018*
C30.63724 (4)0.63255 (19)0.59947 (6)0.0157 (2)
C40.67644 (4)0.46581 (19)0.64578 (7)0.0178 (2)
H40.66600.32440.66370.021*
C50.73091 (5)0.5046 (2)0.66609 (7)0.0201 (3)
H50.75740.38970.69770.024*
C60.74656 (4)0.7110 (2)0.64018 (7)0.0198 (3)
H60.78360.73650.65350.024*
C70.70781 (5)0.8798 (2)0.59482 (7)0.0196 (3)
H70.71841.02170.57740.023*
C80.65356 (4)0.84107 (19)0.57486 (7)0.0183 (2)
H80.62720.95750.54410.022*
C90.58952 (4)0.69014 (19)0.72835 (7)0.0156 (2)
C100.57931 (5)0.4847 (2)0.76303 (7)0.0203 (3)
H100.55210.37880.72630.024*
C110.60851 (5)0.4332 (2)0.85085 (7)0.0220 (3)
H110.60110.29270.87350.026*
C120.64843 (5)0.5860 (2)0.90549 (7)0.0215 (3)
H120.66850.55040.96540.026*
C130.65873 (4)0.7908 (2)0.87190 (7)0.0217 (3)
H130.68590.89650.90890.026*
C140.62935 (4)0.8422 (2)0.78388 (7)0.0184 (2)
H140.63670.98340.76150.022*
C150.47651 (5)0.9274 (2)0.62451 (7)0.0219 (3)
H15A0.43810.89620.60830.033*
H15B0.47981.07220.59630.033*
H15C0.49630.94530.68760.033*
H1O0.5420 (7)0.316 (3)0.5233 (12)0.047 (5)*
H1N0.4909 (6)0.597 (3)0.6155 (9)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0215 (4)0.0148 (4)0.0180 (4)0.0025 (3)0.0070 (3)0.0017 (3)
N10.0150 (4)0.0174 (5)0.0190 (5)0.0005 (3)0.0067 (4)0.0003 (4)
C10.0181 (5)0.0147 (5)0.0137 (5)0.0001 (4)0.0059 (4)0.0001 (4)
C20.0149 (5)0.0147 (5)0.0153 (5)0.0006 (4)0.0060 (4)0.0001 (4)
C30.0189 (5)0.0170 (5)0.0118 (5)0.0000 (4)0.0073 (4)0.0027 (4)
C40.0211 (5)0.0176 (5)0.0160 (5)0.0003 (4)0.0094 (4)0.0001 (4)
C50.0199 (5)0.0219 (6)0.0183 (5)0.0044 (4)0.0084 (4)0.0010 (4)
C60.0185 (5)0.0239 (6)0.0184 (5)0.0002 (4)0.0094 (4)0.0029 (4)
C70.0229 (6)0.0186 (5)0.0193 (5)0.0027 (4)0.0112 (5)0.0013 (4)
C80.0207 (5)0.0178 (5)0.0161 (5)0.0018 (4)0.0077 (4)0.0006 (4)
C90.0161 (5)0.0168 (5)0.0153 (5)0.0020 (4)0.0082 (4)0.0008 (4)
C100.0233 (6)0.0179 (6)0.0188 (5)0.0033 (4)0.0085 (5)0.0019 (4)
C110.0283 (6)0.0191 (6)0.0210 (6)0.0010 (5)0.0131 (5)0.0032 (4)
C120.0219 (5)0.0283 (6)0.0151 (5)0.0034 (5)0.0088 (4)0.0025 (4)
C130.0192 (5)0.0290 (6)0.0164 (5)0.0050 (5)0.0075 (5)0.0029 (5)
C140.0195 (5)0.0193 (5)0.0182 (5)0.0025 (4)0.0098 (4)0.0004 (4)
C150.0203 (5)0.0264 (6)0.0196 (6)0.0037 (4)0.0093 (5)0.0008 (4)
Geometric parameters (Å, º) top
O1—C11.4246 (13)C7—C81.3888 (15)
O1—H1o0.922 (18)C7—H70.9500
N1—C151.4636 (14)C8—H80.9500
N1—C21.4764 (13)C9—C141.3900 (15)
N1—H1n0.899 (15)C9—C101.3961 (15)
C1—C31.5147 (14)C10—C111.3922 (16)
C1—C21.5409 (14)C10—H100.9500
C1—H11.0000C11—C121.3889 (17)
C2—C91.5242 (14)C11—H110.9500
C2—H21.0000C12—C131.3842 (16)
C3—C41.3907 (15)C12—H120.9500
C3—C81.3985 (15)C13—C141.3953 (15)
C4—C51.3934 (15)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.3900 (16)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.3887 (16)C15—H15C0.9800
C6—H60.9500
C1—O1—H1O104.6 (11)C6—C7—H7120.0
C15—N1—C2111.99 (9)C8—C7—H7120.0
C15—N1—H1N107.9 (9)C7—C8—C3120.75 (10)
C2—N1—H1N109.2 (9)C7—C8—H8119.6
O1—C1—C3112.89 (8)C3—C8—H8119.6
O1—C1—C2109.85 (8)C14—C9—C10118.25 (10)
C3—C1—C2111.63 (8)C14—C9—C2119.79 (9)
O1—C1—H1107.4C10—C9—C2121.95 (10)
C3—C1—H1107.4C11—C10—C9120.78 (10)
C2—C1—H1107.4C11—C10—H10119.6
N1—C2—C9114.03 (8)C9—C10—H10119.6
N1—C2—C1108.37 (8)C12—C11—C10120.36 (11)
C9—C2—C1112.89 (8)C12—C11—H11119.8
N1—C2—H2107.1C10—C11—H11119.8
C9—C2—H2107.1C13—C12—C11119.37 (10)
C1—C2—H2107.1C13—C12—H12120.3
C4—C3—C8118.85 (10)C11—C12—H12120.3
C4—C3—C1122.15 (10)C12—C13—C14120.16 (11)
C8—C3—C1119.00 (9)C12—C13—H13119.9
C3—C4—C5120.48 (10)C14—C13—H13119.9
C3—C4—H4119.8C13—C14—C9121.09 (10)
C5—C4—H4119.8C13—C14—H14119.5
C6—C5—C4120.17 (10)C9—C14—H14119.5
C6—C5—H5119.9N1—C15—H15A109.5
C4—C5—H5119.9N1—C15—H15B109.5
C7—C6—C5119.77 (10)H15A—C15—H15B109.5
C7—C6—H6120.1N1—C15—H15C109.5
C5—C6—H6120.1H15A—C15—H15C109.5
C6—C7—C8119.97 (10)H15B—C15—H15C109.5
C15—N1—C2—C973.91 (11)C6—C7—C8—C30.40 (16)
C15—N1—C2—C1159.45 (9)C4—C3—C8—C71.16 (15)
O1—C1—C2—N162.37 (10)C1—C3—C8—C7179.41 (9)
C3—C1—C2—N1171.61 (8)N1—C2—C9—C14130.40 (10)
O1—C1—C2—C964.92 (11)C1—C2—C9—C14105.35 (11)
C3—C1—C2—C961.09 (11)N1—C2—C9—C1050.82 (13)
O1—C1—C3—C418.78 (14)C1—C2—C9—C1073.43 (12)
C2—C1—C3—C4105.54 (11)C14—C9—C10—C110.34 (16)
O1—C1—C3—C8161.81 (9)C2—C9—C10—C11178.45 (10)
C2—C1—C3—C873.87 (12)C9—C10—C11—C120.04 (17)
C8—C3—C4—C50.97 (15)C10—C11—C12—C130.32 (17)
C1—C3—C4—C5179.62 (10)C11—C12—C13—C140.23 (17)
C3—C4—C5—C60.04 (16)C12—C13—C14—C90.16 (17)
C4—C5—C6—C70.74 (16)C10—C9—C14—C130.44 (16)
C5—C6—C7—C80.55 (16)C2—C9—C14—C13178.38 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1i0.92 (2)1.88 (2)2.799 (1)172 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H17NO
Mr227.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)27.4279 (7), 5.69216 (11), 17.1910 (5)
β (°) 116.223 (3)
V3)2407.69 (10)
Z8
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.838, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
4176, 2373, 2197
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.03
No. of reflections2373
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1i0.92 (2)1.88 (2)2.799 (1)172 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the Research Center of Pharmacy, King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGamsey, S., Torre, K. D. & SIngaram, B. (2004). Tetrahedron Asymmetry, 16, 711–715.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds