organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Pyridin-2-yl)-1,3-di­thiol-2-one

aDepartment of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China, and bCollege of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China
*Correspondence e-mail: xzchen@zju.edu.cn

(Received 28 December 2011; accepted 12 January 2012; online 18 January 2012)

In the title compound, C8H5NOS2, the non-H atoms are approximately coplanar [maxium deviation = 0.060 (3) Å]. The dihedral angle between the least-squares planes of the pyridine and 1,3-dithiol-2-one rings is 5.96 (17)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and by an S⋯S close contact [3.510 (5) Å].

Related literature

For background to the chemistry of pyridine-based tetra­thia­fulvalenes, see: Fabre (2004[Fabre, J. M. (2004). Chem. Rev. 104, 5133-5150.]); Zhu et al. (2010[Zhu, Q. Y., Liu, Y., Liu, Z. J., Qin, Y. R. & Dai, J. (2010). Synth. Met. 160, 713-717.]). For the preparation and crystal structures of related compounds, see: Zhu et al. (2010[Zhu, Q. Y., Liu, Y., Liu, Z. J., Qin, Y. R. & Dai, J. (2010). Synth. Met. 160, 713-717.]); Han et al. (2007[Han, Y. F., Zhang, J. S., Lin, Y. J., Dai, J. & Jin, G. X. (2007). J. Organomet. Chem. 692, 4545-4550.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5NOS2

  • Mr = 195.27

  • Orthorhombic, P n a 21

  • a = 11.157 (2) Å

  • b = 5.3216 (10) Å

  • c = 13.689 (3) Å

  • V = 812.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 223 K

  • 0.60 × 0.25 × 0.20 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.564, Tmax = 0.887

  • 2825 measured reflections

  • 1215 independent reflections

  • 1144 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.10

  • 1215 reflections

  • 110 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 430 Friedel pairs

  • Flack parameter: −0.09 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.94 2.46 3.3486 158
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Bifunctional molecules featuring a TTF (tetrathiafulvalene) unit with a pyridine, TTF-py, have been explored and a series of new TTF compounds with transition metal centers have been synthesized. The title compound is an intermediate for synthesis of this type of TTF derivative and also a donor-acceptor ligand.

In the title compound (Fig. 1), all bonds lengths and angles are found to be within the range for 4-pyridine-4-yl-1,3-dithiol-2-one (Han et al., 2007). In addition, the non-H atoms are approximately planar [maxium deviation = 0.060 (3) Å] (Fig. 1). There are short S···S contacts [3.510 (5) Å] and weak C—H···O intermolecular hydrogen bonds in the crystal structure (Table 1, Fig.2).

Related literature top

For background to the chemistry of pyridine-based tetrathiafulvalenes, see: Fabre (2004); Zhu et al. (2010). For the preparation and crystal structures of related compounds, see: Zhu et al. (2010); Han et al. (2007).

Experimental top

The title compound was synthesized according to a literature procedure (Han et al., 2007). Slow evaporation of a solution in THF gave single crystals suitable for X-ray analysis.

Refinement top

All H atoms were placed geometrically (C—H = 0.94 Å) with Uiso = 1.2Ueq of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A crystal packing diagram viewed down the c axis. Dashed lines indicate the weak C—H···O interactions.
4-(Pyridin-2-yl)-1,3-dithiol-2-one top
Crystal data top
C8H5NOS2F(000) = 400
Mr = 195.27Dx = 1.596 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2nCell parameters from 2396 reflections
a = 11.157 (2) Åθ = 3.5–27.5°
b = 5.3216 (10) ŵ = 0.60 mm1
c = 13.689 (3) ÅT = 223 K
V = 812.8 (3) Å3Block, colorless
Z = 40.60 × 0.25 × 0.20 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1215 independent reflections
Radiation source: fine-focus sealed tube1144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.9°
ω scansh = 1013
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 65
Tmin = 0.564, Tmax = 0.887l = 1516
2825 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.0545P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1215 reflectionsΔρmax = 0.18 e Å3
110 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 430 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (11)
Crystal data top
C8H5NOS2V = 812.8 (3) Å3
Mr = 195.27Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.157 (2) ŵ = 0.60 mm1
b = 5.3216 (10) ÅT = 223 K
c = 13.689 (3) Å0.60 × 0.25 × 0.20 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1215 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1144 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.887Rint = 0.027
2825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.18 e Å3
S = 1.10Δρmin = 0.23 e Å3
1215 reflectionsAbsolute structure: Flack (1983), 430 Friedel pairs
110 parametersAbsolute structure parameter: 0.09 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29937 (7)1.06740 (15)0.65200 (6)0.0415 (2)
S20.53107 (7)1.18329 (17)0.55954 (7)0.0439 (2)
O10.3307 (3)1.4374 (5)0.52711 (19)0.0562 (7)
N10.2818 (2)0.6783 (5)0.7860 (2)0.0407 (7)
C30.4232 (3)0.8896 (6)0.6876 (2)0.0329 (7)
C40.3981 (3)0.6970 (6)0.7623 (2)0.0328 (7)
C80.2525 (4)0.5068 (7)0.8529 (3)0.0482 (9)
H80.17130.49310.87040.058*
C70.3323 (4)0.3487 (7)0.8980 (3)0.0474 (9)
H70.30680.22740.94340.057*
C60.4513 (4)0.3754 (7)0.8740 (3)0.0443 (8)
H60.50910.27380.90470.053*
C50.4867 (3)0.5504 (6)0.8052 (3)0.0380 (8)
H50.56780.56950.78800.046*
C20.5273 (3)0.9427 (6)0.6451 (2)0.0349 (7)
H20.59700.85230.66090.042*
C10.3772 (3)1.2650 (6)0.5707 (2)0.0414 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0314 (4)0.0446 (5)0.0484 (5)0.0045 (3)0.0023 (4)0.0054 (5)
S20.0388 (5)0.0469 (5)0.0459 (4)0.0031 (4)0.0006 (4)0.0105 (4)
O10.0569 (16)0.0481 (15)0.0636 (18)0.0060 (12)0.0125 (14)0.0169 (13)
N10.0335 (15)0.0428 (17)0.0456 (16)0.0022 (13)0.0034 (13)0.0024 (15)
C30.0306 (17)0.0326 (16)0.0354 (16)0.0010 (14)0.0022 (13)0.0021 (14)
C40.0295 (16)0.0326 (17)0.0362 (16)0.0008 (14)0.0022 (14)0.0008 (14)
C80.0369 (18)0.057 (2)0.051 (2)0.0075 (19)0.0089 (17)0.001 (2)
C70.057 (2)0.0413 (19)0.044 (2)0.0030 (19)0.0045 (17)0.0009 (17)
C60.051 (2)0.0404 (18)0.0418 (18)0.0073 (17)0.0046 (16)0.0032 (17)
C50.0345 (18)0.041 (2)0.0383 (18)0.0006 (17)0.0015 (14)0.0001 (16)
C20.0292 (15)0.0358 (16)0.0397 (18)0.0020 (13)0.0029 (17)0.0013 (15)
C10.0367 (17)0.0442 (18)0.0433 (18)0.0036 (15)0.0062 (17)0.0061 (18)
Geometric parameters (Å, º) top
S1—C31.744 (3)C4—C51.390 (5)
S1—C11.760 (4)C8—C71.372 (5)
S2—C21.736 (3)C8—H80.9400
S2—C11.778 (4)C7—C61.375 (6)
O1—C11.211 (4)C7—H70.9400
N1—C81.334 (5)C6—C51.382 (5)
N1—C41.342 (4)C6—H60.9400
C3—C21.329 (5)C5—H50.9400
C3—C41.474 (4)C2—H20.9400
C3—S1—C196.32 (17)C6—C7—H7121.4
C2—S2—C195.66 (16)C7—C6—C5120.5 (4)
C8—N1—C4117.0 (3)C7—C6—H6119.7
C2—C3—C4128.1 (3)C5—C6—H6119.7
C2—C3—S1117.0 (2)C6—C5—C4117.6 (3)
C4—C3—S1114.8 (2)C6—C5—H5121.2
N1—C4—C5123.0 (3)C4—C5—H5121.2
N1—C4—C3113.8 (3)C3—C2—S2118.3 (2)
C5—C4—C3123.2 (3)C3—C2—H2120.9
N1—C8—C7124.7 (4)S2—C2—H2120.9
N1—C8—H8117.6O1—C1—S1123.6 (3)
C7—C8—H8117.6O1—C1—S2123.8 (3)
C8—C7—C6117.1 (4)S1—C1—S2112.63 (19)
C8—C7—H7121.4
C1—S1—C3—C22.3 (3)C7—C6—C5—C40.3 (6)
C1—S1—C3—C4177.7 (2)N1—C4—C5—C61.2 (5)
C8—N1—C4—C51.1 (5)C3—C4—C5—C6179.7 (3)
C8—N1—C4—C3179.7 (3)C4—C3—C2—S2179.5 (2)
C2—C3—C4—N1175.8 (3)S1—C3—C2—S20.5 (4)
S1—C3—C4—N14.3 (4)C1—S2—C2—C31.5 (3)
C2—C3—C4—C55.1 (5)C3—S1—C1—O1177.0 (3)
S1—C3—C4—C5174.9 (3)C3—S1—C1—S23.1 (2)
C4—N1—C8—C70.4 (5)C2—S2—C1—O1177.2 (3)
N1—C8—C7—C61.9 (6)C2—S2—C1—S12.9 (2)
C8—C7—C6—C51.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.942.463.3486158
Symmetry code: (i) x+1/2, y3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H5NOS2
Mr195.27
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)223
a, b, c (Å)11.157 (2), 5.3216 (10), 13.689 (3)
V3)812.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.60 × 0.25 × 0.20
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.564, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
2825, 1215, 1144
Rint0.027
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.10
No. of reflections1215
No. of parameters110
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), 430 Friedel pairs
Absolute structure parameter0.09 (11)

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.942.45853.3486157.99
Symmetry code: (i) x+1/2, y3/2, z+1/2.
 

Acknowledgements

This work was supported bythe Inter­national Cooperation Fund of Ningbo City 2009D10014.

References

First citationFabre, J. M. (2004). Chem. Rev. 104, 5133–5150.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, Y. F., Zhang, J. S., Lin, Y. J., Dai, J. & Jin, G. X. (2007). J. Organomet. Chem. 692, 4545–4550.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Q. Y., Liu, Y., Liu, Z. J., Qin, Y. R. & Dai, J. (2010). Synth. Met. 160, 713–717.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds