metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m331-m332

[μ-Bis(di­phenyl­phosphan­yl)methane]­tricarbon­yl(μ-p-toluene­sulfonyl­meth­yl iso­cyanato)(tri­phenyl­phosphane)ironplatinum(FePt)

aInstitut UTINAM UMR 6213 CNRS, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France, and bAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de

(Received 22 November 2011; accepted 30 January 2012; online 24 February 2012)

The title compound, [FePt(C9H9NO2S)(C18H15P)(C25H22P2)(CO)3], represents a rare example of an isonitrile-bridged heterobimetallic complex (here Pt and Fe) and is an inter­esting precursor for the preparation of heterodinuclear μ-amino­carbyne complexes, since the basic imine-type N atom of the μ2-C=N–R ligand readily undergoes addition with various electrophiles to afford iminium-like salts. In the crystal, the almost symmetrically bridging μ2-C=N-R ligand (neglecting the different atomic radii of Fe and Pt) is strongly bent towards the Fe(CO)3 fragment, with a C=N-R angle of only 121.1 (4)°.

Related literature

The title compound was first prepared in 2002; see: Knorr et al. (2002[Knorr, M., Jourdain, I., Crini, G., Frank, K., Sachdev, H. & Strohmann, C. (2002). Eur. J. Inorg. Chem. pp. 2419-2426.]). Concerning the N-protonation and N-alkyl­ation of related [(OC)3Fe(μ-C=N-R)(μ-dppm)Pt(PPh3)] complexes, see: Knorr et al. (1993[Knorr, M., Faure, T. & Braunstein, P. (1993). J. Organomet. Chem. 447, C4-C6.]). For a structural comparison with [(OC)3Fe(μ-C=N-o-anis­yl)(μ-dppm)Pt(PPh3)], see: Knorr & Strohmann (2000[Knorr, M. & Strohmann, C. (2000). Eur. J. Inorg. Chem. pp. 241-252.]). For a structural comparison with [(OC)4W(μ-C=N-CH2SO2-p-tol­yl)(μ-dppm)Pt(PPh3)], see: Knorr et al. (2003[Knorr, M., Jourdain, I., Lentz, D., Willemsen, S. & Strohmann, C. (2003). J. Organomet. Chem. 684, 216-229.]). For a structural comparison with [(OC)3Fe(μ-C=O)(μ-dppm)Pt(PPh3)], see: Fontaine et al. (1988[Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741-750.]). For a structural comparision with [ClPt(μ-dppm)2(μ-C=NMe)Ni(CNMe)]Cl, see Ratliff et al. (1990[Ratliff, K. S., Fanwick, P. E. & Kubiak, C. P. (1990). Polyhedron, 9, 2651-2653.]). For a structural comparision with [Cp*FeCNPh(μ-C=NPh)(μ-SEt)PdCl(PPh3)]PF6, see Chen et al. (2010[Chen, P., Peng, Y., Jia, C. & Qu, J. (2010). Eur. J. Inorg. Chem. pp. 5239-5246.]). For a structural comparision with [(EtNC)3Fe(μ-C=NEt)3Fe(CNEt)3], see Basset et al. (1981[Basset, J. M., Barker, G. K., Green, M., Howard, J. A. K., Stone, F. G. A. & Wolsey, W. C. (1981). J. Chem. Soc. Dalton Trans. pp. 219-227.]).

[Scheme 1]

Experimental

Crystal data
  • [FePt(C9H9NO2S)(C18H15P)(C25H22P2)(CO)3]

  • Mr = 1176.84

  • Monoclinic, P 21 /n

  • a = 14.360 (4) Å

  • b = 18.855 (6) Å

  • c = 17.919 (5) Å

  • β = 96.50 (3)°

  • V = 4820 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.39 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (FACEIT in IPDS; Stoe & Cie, 1999[Stoe & Cie (1999). IPDS. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.344, Tmax = 0.550

  • 38854 measured reflections

  • 9346 independent reflections

  • 7344 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.090

  • S = 1.01

  • 9346 reflections

  • 605 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—Fe 1.778 (5)
C2—Fe 1.753 (6)
C3—Fe 1.792 (5)
C4—Pt 1.987 (6)
C4—Fe 2.003 (5)
Fe—P1 2.2389 (14)
Fe—Pt 2.5555 (9)
P2—Pt 2.3278 (13)
P3—Pt 2.2680 (13)
N1—C4—Pt 139.4 (4)
N1—C4—Fe 140.7 (4)
Pt—C4—Fe 79.6 (2)

Data collection: EXPOSE in IPDS (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS. Stoe & Cie, Darmstadt, Germany.]); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isonitriles, also called isocyanides (RNC) are often employed as ligands in coordination chemistry, since steric and electronic variation of the group R permits fine-tuning of the properties of a metal complex. In addition to the innumerable examples of mononuclear isonitrile complexes, many heterobimetallic complexes and higher nuclearity clusters bearing terminal isonitrile ligands have now been documented. However, polymetallic systems containing an isonitrile bridge between two different metal centers are still extremely scarce. Crystallograpically characterized examples include [ClPt(µ-dppm)2(µ-CNMe)Ni(CNMe)]Cl and [Cp*FeCNPh(µ-CNPh)(µ-SEt)PdCl(PPh3)][PF6] (Ratliff et al., 1990; Chen et al., 2010). This paucity is quite surprising, since metal-bound CO, which acts like CNR as a σ-donor and π-acceptor ligand, readily adopts a µ2-CO bonding mode in heterometallic systems, where the metal centres are connected through a metal–metal bond. In the context of our interest on the activation of small unsaturated organic molecules such as olefins, alkynes and isocyanides, we have recently reported the synthesis of [(OC)3Fe(µ-CN-CH2SO2p-tolyl)(µ-dppm)Pt(PPh3)] by reduction of [(OC)4Fe(µ-dppm)PtCl2(CN-CH2SO2p-tolyl)] in the presence of PPh3. Alternatively, the title compound is readily prepared by substitution of the bridging carbonyl group of [(OC)3Fe(µ-CO)(µ-dppm)Pt(PPh3)] (1) by addition of an equimolar amount of the isocyanide according Fig. 1.

The title compound 2 crystallizes from CH2Cl2/hexane in the monoclinic crystal system, space group P21/n. As shown in Fig. 2, the iron and platinum centres are linked by a dppm-bridge and a metal–metal bond, whose Fe–Pt separation of 2.5555 (9) Å is quite similar with that of the precursor 1 [Fe–Pt 2.579 (4) Å]. Also the other structural features are very reminiscent to the molecular structure of the latter compound. The bridging isonitrile ligand is symmetrically situated between the metals, with Fe—C(4) and Pt—C(4) distances of 2.003 (5) and 1.988 (6) Å, respectively. The length of the C(4)—N double bond of 1.180 (7) Å is somewhat shorter than that of the W—Pt complex [(OC)4W(µ-CN-CH2SO2p-tolyl)(µ-dppm)Pt(PPh3)] [1.229 (12) Å] (Knorr et al., 2003) and matches with that of [(OC)3Fe(µ-CN-o-anisyl)(µ-dppm)Pt(PPh3)] [1.191 (12) Å] (Knorr & Strohmann, 2000). The C(4)—N(1)—C(5) angle of 121.1 (4)° is extremely bent, the tosylmethyl group being oriented toward the Fe(CO)3 moiety. A comparable inclination with an average C—N—C angle of 123.1° was found for the µ-CN-Et ligands of [(EtNC)3Fe(µ-CN-Et)3Fe(CNEt)3], (Basset et al., 1981) whereas for the most part of structurally characterized bent µ-CNR systems C—N—C angles in the range between 130–133° have been documented.

Related literature top

The title compound was first prepared in 2002; see: Knorr et al. (2002). Concerning the N-protonation and N-alkylation of related [(OC)3Fe(µ-CN-R)(µ-dppm)Pt(PPh3)] complexes, see: Knorr et al. (1993). For a structural comparison with [(OC)3Fe(µ-C N-o-anisyl)(µ-dppm)Pt(PPh3)], see: Knorr & Strohmann (2000). For a structural comparison with [(OC)4W(µ-C N-CH2SO2-p-tolyl)(µ-dppm)Pt(PPh3)], see: Knorr et al. (2003). For a structural comparison with [(OC)3Fe(µ-C O)(µ-dppm)Pt(PPh3)], see: Fontaine et al. (1988). [Please add similar citations for Ratliff et al. (1990); Chen et al. (2010); Basset et al. (1981)]

Experimental top

Solid p-tosylmethylisocyanide (98 mg, 0.5 mmol) was added in three portions to a solution of [(OC)3Fe(µ-CO)(µ-dppm)Pt(PPh3)] (1) (505 mg, 0.5 mmol) in 10 ml of CH2Cl2. The orange reaction mixture was stirred at room temperature for 30 min and then concentrated to 5 ml under reduced pressure. Addition of a hexane layer gave after storage for 2 d at 5°C in a refrigerator air-stable yellow–orange crystals (459 mg, 78% yield). Characterization data have been previously described in the literature (Knorr et al., 2002).

Refinement top

All H atoms were refined in geometrical idealized position using the riding model [aromatic C: C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C); CH2: C—H = 0.99 Å, Uiso(H) = 1.2Ueq(C); CH3: C—H = 0.98 Å, Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell refinement: CELL in IPDS (Stoe & Cie, 1999); data reduction: INTEGRATE in IPDS (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Synthesis of the heterobimetallic µ2-CNR isocyanide complex 2.
[Figure 2] Fig. 2. Thermal ellipsoid plot of 2 at the 50% probability level (H atoms were omitted for clarity).
[µ-Bis(diphenylphosphanyl)methane]tricarbonyl(µ-p- toluenesulfonylmethyl isocyanato)(triphenylphosphane)ironplatinum(FePt) top
Crystal data top
[FePt(C9H9NO2S)(C18H15P)(C25H22P2)(CO)3]F(000) = 2352
Mr = 1176.84Dx = 1.622 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 47431 reflections
a = 14.360 (4) Åθ = 2.2–28.3°
b = 18.855 (6) ŵ = 3.39 mm1
c = 17.919 (5) ÅT = 173 K
β = 96.50 (3)°Needle, yellow-orange
V = 4820 (2) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
9346 independent reflections
Radiation source: fine-focus sealed tube7344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ scansθmax = 26.0°, θmin = 2.2°
Absorption correction: numerical
(FACEIT in IPDS; Stoe & Cie, 1999)
h = 1717
Tmin = 0.344, Tmax = 0.550k = 2323
38854 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
9346 reflections(Δ/σ)max = 0.002
605 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.37 e Å3
Crystal data top
[FePt(C9H9NO2S)(C18H15P)(C25H22P2)(CO)3]V = 4820 (2) Å3
Mr = 1176.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.360 (4) ŵ = 3.39 mm1
b = 18.855 (6) ÅT = 173 K
c = 17.919 (5) Å0.40 × 0.20 × 0.20 mm
β = 96.50 (3)°
Data collection top
Stoe IPDS
diffractometer
9346 independent reflections
Absorption correction: numerical
(FACEIT in IPDS; Stoe & Cie, 1999)
7344 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 0.550Rint = 0.052
38854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.01Δρmax = 1.26 e Å3
9346 reflectionsΔρmin = 1.37 e Å3
605 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5805 (4)0.3172 (3)0.6668 (3)0.0320 (12)
C20.5076 (4)0.2169 (3)0.5794 (3)0.0326 (12)
C30.4134 (3)0.1848 (2)0.6959 (3)0.0274 (11)
C40.4066 (3)0.3216 (2)0.6688 (3)0.0286 (11)
C50.3800 (4)0.3612 (3)0.5460 (3)0.0322 (12)
H5A0.36500.31360.52440.039*
H5B0.44680.37100.54150.039*
C60.3237 (3)0.5044 (2)0.5453 (3)0.0278 (11)
C70.2672 (4)0.5181 (3)0.6014 (3)0.0335 (12)
H70.22420.48330.61480.040*
C80.2741 (4)0.5826 (3)0.6376 (3)0.0384 (13)
H80.23620.59190.67660.046*
C90.3357 (4)0.6341 (3)0.6176 (4)0.0417 (14)
C100.3926 (4)0.6188 (3)0.5623 (4)0.0478 (16)
H100.43600.65350.54920.057*
C110.3874 (4)0.5545 (3)0.5262 (4)0.0371 (13)
H110.42710.54440.48850.045*
C120.3380 (5)0.7052 (3)0.6543 (4)0.061 (2)
H12A0.27480.71790.66530.092*
H12B0.36030.74070.62050.092*
H12C0.38030.70380.70120.092*
C130.7264 (3)0.2207 (2)0.7703 (3)0.0258 (10)
C140.7691 (3)0.2306 (3)0.8422 (3)0.0289 (11)
H140.73730.21830.88410.035*
C150.8591 (4)0.2588 (3)0.8534 (3)0.0356 (12)
H150.88940.26490.90300.043*
C160.9045 (3)0.2779 (3)0.7926 (3)0.0351 (13)
H160.96540.29820.80040.042*
C170.8622 (3)0.2678 (3)0.7209 (3)0.0353 (12)
H170.89400.28010.67900.042*
C180.7727 (3)0.2395 (3)0.7099 (3)0.0321 (12)
H180.74290.23300.66030.038*
C190.6353 (3)0.0928 (2)0.7231 (3)0.0274 (11)
C200.5854 (4)0.0593 (3)0.6636 (3)0.0348 (12)
H200.53680.08380.63390.042*
C210.6056 (5)0.0103 (3)0.6465 (4)0.0500 (16)
H210.57120.03340.60500.060*
C220.6751 (5)0.0455 (3)0.6898 (5)0.0545 (19)
H220.68840.09350.67850.065*
C230.7252 (5)0.0133 (3)0.7485 (4)0.0550 (18)
H230.77410.03820.77750.066*
C240.7055 (4)0.0556 (3)0.7661 (4)0.0416 (14)
H240.74010.07800.80800.050*
C250.5661 (3)0.1660 (3)0.8403 (3)0.0243 (10)
H25A0.62070.15380.87680.029*
H25B0.52450.12400.83520.029*
C260.4384 (3)0.1922 (3)0.9461 (3)0.0258 (10)
C270.4593 (4)0.1232 (3)0.9700 (3)0.0360 (12)
H270.51040.09880.95240.043*
C280.4060 (4)0.0900 (3)1.0193 (3)0.0408 (13)
H280.41950.04241.03420.049*
C290.3342 (4)0.1251 (3)1.0467 (3)0.0405 (14)
H290.29890.10241.08150.049*
C300.3131 (4)0.1930 (3)1.0241 (4)0.0445 (14)
H300.26240.21711.04270.053*
C310.3651 (4)0.2269 (3)0.9740 (3)0.0353 (12)
H310.35020.27420.95880.042*
C320.5933 (3)0.2874 (2)0.9386 (3)0.0250 (10)
C330.6381 (4)0.2575 (3)1.0035 (3)0.0308 (11)
H330.61840.21261.01970.037*
C340.7103 (4)0.2922 (3)1.0446 (3)0.0391 (13)
H340.74130.27081.08860.047*
C350.7381 (4)0.3582 (3)1.0219 (4)0.0435 (14)
H350.78810.38241.05060.052*
C360.6935 (4)0.3892 (3)0.9578 (4)0.0417 (14)
H360.71210.43480.94260.050*
C370.6217 (4)0.3534 (3)0.9161 (3)0.0325 (12)
H370.59140.37430.87150.039*
C380.3223 (3)0.4062 (2)0.9132 (3)0.0265 (10)
C390.3962 (4)0.4227 (3)0.9664 (3)0.0350 (12)
H390.45630.43200.95130.042*
C400.3833 (4)0.4259 (3)1.0420 (3)0.0448 (14)
H400.43400.43921.07800.054*
C410.2973 (4)0.4098 (3)1.0652 (3)0.0439 (14)
H410.28930.41011.11710.053*
C420.2239 (4)0.3935 (3)1.0130 (4)0.0422 (14)
H420.16420.38371.02870.051*
C430.2354 (4)0.3912 (3)0.9368 (3)0.0336 (12)
H430.18390.37930.90100.040*
C440.4038 (3)0.4811 (3)0.7998 (3)0.0276 (11)
C450.3826 (4)0.5437 (3)0.8353 (3)0.0345 (12)
H450.33660.54390.86950.041*
C460.4280 (4)0.6050 (3)0.8210 (4)0.0449 (15)
H460.41340.64760.84530.054*
C470.4946 (4)0.6057 (3)0.7718 (4)0.0496 (17)
H470.52590.64870.76250.060*
C480.5162 (4)0.5447 (3)0.7362 (3)0.0402 (14)
H480.56200.54500.70190.048*
C490.4711 (3)0.4836 (3)0.7506 (3)0.0345 (12)
H490.48640.44130.72600.041*
C500.2270 (3)0.4062 (3)0.7653 (3)0.0260 (10)
C510.1876 (4)0.3497 (3)0.7237 (3)0.0333 (12)
H510.22320.30770.71950.040*
C520.0988 (4)0.3536 (3)0.6889 (3)0.0383 (13)
H520.07280.31430.66060.046*
C530.0459 (4)0.4139 (4)0.6941 (4)0.0458 (15)
H530.01630.41630.66980.055*
C540.0837 (4)0.4700 (3)0.7342 (4)0.0439 (15)
H540.04760.51180.73760.053*
C550.1739 (3)0.4670 (3)0.7702 (3)0.0342 (12)
H550.19950.50660.79810.041*
Fe0.50291 (4)0.24438 (3)0.67242 (4)0.02043 (14)
N10.3652 (3)0.3610 (2)0.6259 (2)0.0242 (9)
O10.6270 (3)0.3649 (2)0.6603 (3)0.0487 (11)
O20.5088 (3)0.1990 (2)0.5180 (2)0.0533 (12)
O30.3565 (3)0.1450 (2)0.7070 (2)0.0432 (10)
O40.3496 (3)0.4347 (2)0.4249 (2)0.0422 (9)
O50.2135 (3)0.40500 (19)0.4911 (2)0.0398 (9)
P10.60807 (8)0.18336 (6)0.74887 (7)0.0215 (2)
P20.50237 (8)0.23947 (6)0.87895 (7)0.0232 (3)
P30.34487 (8)0.39739 (6)0.81580 (7)0.0232 (3)
Pt0.426732 (12)0.303384 (9)0.778673 (10)0.02230 (6)
S0.30918 (9)0.42593 (6)0.49380 (7)0.0290 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (3)0.031 (3)0.036 (3)0.010 (2)0.002 (2)0.000 (2)
C20.033 (3)0.032 (3)0.033 (3)0.012 (2)0.005 (2)0.003 (2)
C30.029 (2)0.022 (2)0.030 (3)0.003 (2)0.002 (2)0.000 (2)
C40.026 (2)0.025 (2)0.036 (3)0.0054 (19)0.012 (2)0.007 (2)
C50.034 (3)0.033 (3)0.030 (3)0.010 (2)0.005 (2)0.001 (2)
C60.029 (2)0.024 (2)0.029 (3)0.0041 (19)0.003 (2)0.005 (2)
C70.040 (3)0.027 (3)0.035 (3)0.003 (2)0.007 (2)0.004 (2)
C80.048 (3)0.035 (3)0.031 (3)0.010 (2)0.004 (3)0.004 (2)
C90.045 (3)0.032 (3)0.045 (4)0.002 (2)0.008 (3)0.006 (3)
C100.040 (3)0.033 (3)0.071 (5)0.006 (2)0.011 (3)0.011 (3)
C110.033 (3)0.031 (3)0.049 (4)0.002 (2)0.014 (3)0.000 (2)
C120.071 (5)0.039 (4)0.069 (5)0.002 (3)0.015 (4)0.018 (3)
C130.025 (2)0.025 (2)0.028 (3)0.0085 (19)0.004 (2)0.001 (2)
C140.028 (3)0.033 (3)0.026 (3)0.004 (2)0.004 (2)0.002 (2)
C150.028 (3)0.043 (3)0.034 (3)0.005 (2)0.004 (2)0.000 (2)
C160.020 (2)0.032 (3)0.053 (4)0.003 (2)0.003 (2)0.006 (2)
C170.024 (2)0.040 (3)0.043 (4)0.002 (2)0.007 (2)0.011 (3)
C180.032 (3)0.035 (3)0.030 (3)0.003 (2)0.005 (2)0.007 (2)
C190.032 (3)0.021 (2)0.030 (3)0.0021 (19)0.010 (2)0.003 (2)
C200.041 (3)0.028 (3)0.039 (3)0.001 (2)0.015 (2)0.002 (2)
C210.068 (4)0.031 (3)0.054 (4)0.006 (3)0.019 (3)0.006 (3)
C220.069 (4)0.018 (3)0.082 (6)0.005 (3)0.037 (4)0.003 (3)
C230.066 (4)0.037 (3)0.064 (5)0.024 (3)0.017 (4)0.013 (3)
C240.052 (3)0.032 (3)0.041 (4)0.007 (2)0.008 (3)0.005 (2)
C250.021 (2)0.029 (2)0.024 (3)0.0006 (18)0.0067 (19)0.004 (2)
C260.028 (2)0.032 (2)0.018 (2)0.004 (2)0.0025 (19)0.004 (2)
C270.041 (3)0.039 (3)0.028 (3)0.001 (2)0.006 (2)0.011 (2)
C280.052 (3)0.040 (3)0.031 (3)0.010 (3)0.004 (3)0.007 (2)
C290.044 (3)0.052 (4)0.028 (3)0.020 (3)0.012 (2)0.000 (3)
C300.039 (3)0.058 (4)0.040 (4)0.004 (3)0.020 (3)0.007 (3)
C310.042 (3)0.037 (3)0.028 (3)0.004 (2)0.014 (2)0.003 (2)
C320.026 (2)0.027 (2)0.022 (3)0.0050 (18)0.0029 (19)0.0019 (19)
C330.034 (3)0.032 (3)0.026 (3)0.001 (2)0.000 (2)0.003 (2)
C340.041 (3)0.041 (3)0.033 (3)0.005 (2)0.003 (2)0.005 (2)
C350.039 (3)0.045 (3)0.046 (4)0.007 (3)0.001 (3)0.014 (3)
C360.043 (3)0.029 (3)0.055 (4)0.009 (2)0.013 (3)0.001 (3)
C370.035 (3)0.030 (3)0.033 (3)0.003 (2)0.007 (2)0.004 (2)
C380.032 (3)0.024 (2)0.024 (3)0.0026 (19)0.008 (2)0.003 (2)
C390.035 (3)0.040 (3)0.030 (3)0.001 (2)0.007 (2)0.001 (2)
C400.057 (4)0.046 (3)0.030 (3)0.006 (3)0.001 (3)0.000 (3)
C410.064 (4)0.045 (3)0.025 (3)0.000 (3)0.016 (3)0.000 (3)
C420.048 (3)0.042 (3)0.042 (4)0.006 (3)0.028 (3)0.006 (3)
C430.033 (3)0.037 (3)0.031 (3)0.005 (2)0.008 (2)0.001 (2)
C440.026 (2)0.027 (2)0.028 (3)0.0036 (19)0.003 (2)0.006 (2)
C450.035 (3)0.032 (3)0.037 (3)0.002 (2)0.004 (2)0.005 (2)
C460.057 (4)0.028 (3)0.048 (4)0.008 (3)0.000 (3)0.006 (3)
C470.049 (4)0.043 (3)0.054 (4)0.021 (3)0.007 (3)0.010 (3)
C480.035 (3)0.047 (3)0.040 (4)0.012 (2)0.007 (2)0.011 (3)
C490.030 (3)0.036 (3)0.038 (3)0.002 (2)0.006 (2)0.003 (2)
C500.028 (2)0.030 (2)0.022 (3)0.0033 (19)0.009 (2)0.005 (2)
C510.033 (3)0.037 (3)0.031 (3)0.004 (2)0.009 (2)0.005 (2)
C520.027 (3)0.051 (3)0.037 (3)0.006 (2)0.005 (2)0.008 (3)
C530.029 (3)0.067 (4)0.040 (4)0.000 (3)0.001 (2)0.008 (3)
C540.036 (3)0.040 (3)0.057 (4)0.013 (2)0.011 (3)0.008 (3)
C550.033 (3)0.030 (3)0.041 (3)0.005 (2)0.008 (2)0.000 (2)
Fe0.0214 (3)0.0206 (3)0.0196 (4)0.0025 (2)0.0036 (3)0.0011 (3)
N10.0178 (18)0.029 (2)0.027 (2)0.0020 (16)0.0059 (16)0.0072 (18)
O10.037 (2)0.030 (2)0.080 (3)0.0058 (17)0.014 (2)0.010 (2)
O20.065 (3)0.068 (3)0.026 (2)0.027 (2)0.004 (2)0.010 (2)
O30.037 (2)0.040 (2)0.054 (3)0.0118 (18)0.0074 (19)0.0078 (19)
O40.063 (3)0.039 (2)0.025 (2)0.0075 (18)0.0069 (19)0.0057 (16)
O50.035 (2)0.036 (2)0.046 (3)0.0014 (16)0.0060 (17)0.0035 (18)
P10.0228 (6)0.0216 (6)0.0203 (6)0.0023 (4)0.0038 (5)0.0015 (5)
P20.0247 (6)0.0259 (6)0.0193 (7)0.0036 (5)0.0041 (5)0.0024 (5)
P30.0234 (6)0.0238 (6)0.0230 (7)0.0032 (5)0.0056 (5)0.0005 (5)
Pt0.02377 (10)0.02391 (10)0.01969 (10)0.00530 (7)0.00456 (6)0.00226 (8)
S0.0368 (7)0.0261 (6)0.0231 (7)0.0014 (5)0.0014 (5)0.0024 (5)
Geometric parameters (Å, º) top
C1—O11.133 (6)C28—C291.362 (9)
C1—Fe1.778 (5)C28—H280.9500
C2—O21.153 (7)C29—C301.366 (9)
C2—Fe1.753 (6)C29—H290.9500
C3—O31.143 (6)C30—C311.387 (8)
C3—Fe1.792 (5)C30—H300.9500
C4—N11.180 (7)C31—H310.9500
C4—Pt1.987 (6)C32—C371.383 (7)
C4—Fe2.003 (5)C32—C331.384 (7)
C5—N11.471 (7)C32—P21.830 (5)
C5—S1.785 (5)C33—C341.368 (7)
C5—H5A0.9900C33—H330.9500
C5—H5B0.9900C34—C351.383 (8)
C6—C111.385 (7)C34—H340.9500
C6—C71.386 (8)C35—C361.380 (9)
C6—S1.744 (5)C35—H350.9500
C7—C81.376 (7)C36—C371.380 (8)
C7—H70.9500C36—H360.9500
C8—C91.388 (8)C37—H370.9500
C8—H80.9500C38—C391.379 (7)
C9—C101.383 (9)C38—C431.392 (7)
C9—C121.493 (8)C38—P31.819 (5)
C10—C111.375 (8)C39—C401.389 (8)
C10—H100.9500C39—H390.9500
C11—H110.9500C40—C411.381 (9)
C12—H12A0.9800C40—H400.9500
C12—H12B0.9800C41—C421.362 (9)
C12—H12C0.9800C41—H410.9500
C13—C141.377 (7)C42—C431.394 (8)
C13—C181.378 (7)C42—H420.9500
C13—P11.840 (5)C43—H430.9500
C14—C151.390 (7)C44—C491.381 (8)
C14—H140.9500C44—C451.391 (7)
C15—C161.380 (8)C44—P31.828 (5)
C15—H150.9500C45—C461.366 (8)
C16—C171.371 (8)C45—H450.9500
C16—H160.9500C46—C471.372 (9)
C17—C181.385 (7)C46—H460.9500
C17—H170.9500C47—C481.367 (9)
C18—H180.9500C47—H470.9500
C19—C201.370 (8)C48—C491.360 (7)
C19—C241.387 (7)C48—H480.9500
C19—P11.822 (5)C49—H490.9500
C20—C211.385 (8)C50—C551.384 (7)
C20—H200.9500C50—C511.385 (7)
C21—C221.366 (10)C50—P31.834 (5)
C21—H210.9500C51—C521.357 (7)
C22—C231.349 (11)C51—H510.9500
C22—H220.9500C52—C531.377 (9)
C23—C241.375 (8)C52—H520.9500
C23—H230.9500C53—C541.356 (9)
C24—H240.9500C53—H530.9500
C25—P11.837 (5)C54—C551.382 (8)
C25—P21.839 (5)C54—H540.9500
C25—H25A0.9900C55—H550.9500
C25—H25B0.9900Fe—P12.2389 (14)
C26—C311.379 (7)Fe—Pt2.5555 (9)
C26—C271.392 (7)O4—S1.432 (4)
C26—P21.827 (5)O5—S1.424 (4)
C27—C281.382 (8)P2—Pt2.3278 (13)
C27—H270.9500P3—Pt2.2680 (13)
O1—C1—Fe176.6 (5)C34—C35—H35119.9
O2—C2—Fe178.7 (5)C37—C36—C35119.6 (5)
O3—C3—Fe176.2 (5)C37—C36—H36120.2
N1—C4—Pt139.4 (4)C35—C36—H36120.2
N1—C4—Fe140.7 (4)C36—C37—C32120.5 (5)
Pt—C4—Fe79.6 (2)C36—C37—H37119.7
N1—C5—S112.0 (3)C32—C37—H37119.7
N1—C5—H5A109.2C39—C38—C43118.8 (5)
S—C5—H5A109.2C39—C38—P3118.5 (4)
N1—C5—H5B109.2C43—C38—P3122.4 (4)
S—C5—H5B109.2C38—C39—C40120.4 (5)
H5A—C5—H5B107.9C38—C39—H39119.8
C11—C6—C7120.7 (5)C40—C39—H39119.8
C11—C6—S119.3 (4)C41—C40—C39120.4 (6)
C7—C6—S119.8 (4)C41—C40—H40119.8
C8—C7—C6119.3 (5)C39—C40—H40119.8
C8—C7—H7120.3C42—C41—C40119.5 (6)
C6—C7—H7120.3C42—C41—H41120.2
C7—C8—C9120.7 (6)C40—C41—H41120.2
C7—C8—H8119.6C41—C42—C43120.7 (5)
C9—C8—H8119.6C41—C42—H42119.7
C10—C9—C8119.0 (5)C43—C42—H42119.7
C10—C9—C12121.1 (6)C38—C43—C42120.1 (5)
C8—C9—C12119.9 (6)C38—C43—H43120.0
C11—C10—C9121.1 (6)C42—C43—H43120.0
C11—C10—H10119.5C49—C44—C45117.9 (5)
C9—C10—H10119.5C49—C44—P3119.9 (4)
C10—C11—C6119.1 (5)C45—C44—P3122.1 (4)
C10—C11—H11120.4C46—C45—C44119.8 (6)
C6—C11—H11120.4C46—C45—H45120.1
C9—C12—H12A109.5C44—C45—H45120.1
C9—C12—H12B109.5C45—C46—C47120.8 (6)
H12A—C12—H12B109.5C45—C46—H46119.6
C9—C12—H12C109.5C47—C46—H46119.6
H12A—C12—H12C109.5C48—C47—C46120.2 (5)
H12B—C12—H12C109.5C48—C47—H47119.9
C14—C13—C18119.8 (5)C46—C47—H47119.9
C14—C13—P1123.4 (4)C49—C48—C47119.1 (6)
C18—C13—P1116.8 (4)C49—C48—H48120.4
C13—C14—C15119.7 (5)C47—C48—H48120.4
C13—C14—H14120.2C48—C49—C44122.2 (5)
C15—C14—H14120.2C48—C49—H49118.9
C16—C15—C14120.0 (5)C44—C49—H49118.9
C16—C15—H15120.0C55—C50—C51118.5 (5)
C14—C15—H15120.0C55—C50—P3121.9 (4)
C17—C16—C15120.3 (5)C51—C50—P3119.6 (4)
C17—C16—H16119.8C52—C51—C50120.8 (5)
C15—C16—H16119.8C52—C51—H51119.6
C16—C17—C18119.5 (5)C50—C51—H51119.6
C16—C17—H17120.2C51—C52—C53120.7 (5)
C18—C17—H17120.2C51—C52—H52119.7
C13—C18—C17120.6 (5)C53—C52—H52119.7
C13—C18—H18119.7C54—C53—C52119.3 (5)
C17—C18—H18119.7C54—C53—H53120.3
C20—C19—C24118.8 (5)C52—C53—H53120.3
C20—C19—P1121.4 (4)C53—C54—C55120.9 (5)
C24—C19—P1119.7 (4)C53—C54—H54119.6
C19—C20—C21120.4 (6)C55—C54—H54119.6
C19—C20—H20119.8C54—C55—C50119.9 (5)
C21—C20—H20119.8C54—C55—H55120.1
C22—C21—C20119.5 (6)C50—C55—H55120.1
C22—C21—H21120.2C2—Fe—C194.8 (3)
C20—C21—H21120.2C2—Fe—C398.2 (2)
C23—C22—C21121.0 (6)C1—Fe—C3165.4 (2)
C23—C22—H22119.5C2—Fe—C4106.5 (2)
C21—C22—H22119.5C1—Fe—C482.6 (2)
C22—C23—C24120.0 (6)C3—Fe—C487.3 (2)
C22—C23—H23120.0C2—Fe—P1109.51 (16)
C24—C23—H23120.0C1—Fe—P192.75 (17)
C23—C24—C19120.4 (6)C3—Fe—P189.22 (16)
C23—C24—H24119.8C4—Fe—P1143.95 (17)
C19—C24—H24119.8C2—Fe—Pt154.45 (16)
P1—C25—P2115.4 (3)C1—Fe—Pt91.70 (18)
P1—C25—H25A108.4C3—Fe—Pt73.70 (16)
P2—C25—H25A108.4C4—Fe—Pt49.91 (16)
P1—C25—H25B108.4P1—Fe—Pt94.81 (4)
P2—C25—H25B108.4C4—N1—C5121.1 (4)
H25A—C25—H25B107.5C19—P1—C2599.2 (2)
C31—C26—C27118.6 (5)C19—P1—C13101.1 (2)
C31—C26—P2117.9 (4)C25—P1—C13105.7 (2)
C27—C26—P2123.5 (4)C19—P1—Fe118.40 (18)
C28—C27—C26120.2 (5)C25—P1—Fe111.74 (15)
C28—C27—H27119.9C13—P1—Fe118.27 (16)
C26—C27—H27119.9C26—P2—C32103.6 (2)
C29—C28—C27120.5 (6)C26—P2—C25100.9 (2)
C29—C28—H28119.8C32—P2—C25103.8 (2)
C27—C28—H28119.8C26—P2—Pt122.38 (16)
C28—C29—C30120.0 (5)C32—P2—Pt115.77 (16)
C28—C29—H29120.0C25—P2—Pt107.91 (16)
C30—C29—H29120.0C38—P3—C44101.9 (2)
C29—C30—C31120.4 (5)C38—P3—C50102.1 (2)
C29—C30—H30119.8C44—P3—C50105.2 (2)
C31—C30—H30119.8C38—P3—Pt120.51 (16)
C26—C31—C30120.3 (5)C44—P3—Pt111.37 (18)
C26—C31—H31119.8C50—P3—Pt113.99 (16)
C30—C31—H31119.8C4—Pt—P397.70 (14)
C37—C32—C33119.2 (5)C4—Pt—P2148.96 (14)
C37—C32—P2119.2 (4)P3—Pt—P2112.97 (5)
C33—C32—P2121.5 (4)C4—Pt—Fe50.45 (14)
C34—C33—C32120.7 (5)P3—Pt—Fe146.99 (4)
C34—C33—H33119.7P2—Pt—Fe98.51 (4)
C32—C33—H33119.7O5—S—O4119.0 (2)
C33—C34—C35119.9 (5)O5—S—C6108.1 (2)
C33—C34—H34120.1O4—S—C6108.8 (2)
C35—C34—H34120.1O5—S—C5108.6 (2)
C36—C35—C34120.2 (5)O4—S—C5105.6 (2)
C36—C35—H35119.9C6—S—C5106.0 (2)

Experimental details

Crystal data
Chemical formula[FePt(C9H9NO2S)(C18H15P)(C25H22P2)(CO)3]
Mr1176.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)14.360 (4), 18.855 (6), 17.919 (5)
β (°) 96.50 (3)
V3)4820 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.39
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
(FACEIT in IPDS; Stoe & Cie, 1999)
Tmin, Tmax0.344, 0.550
No. of measured, independent and
observed [I > 2σ(I)] reflections
38854, 9346, 7344
Rint0.052
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.01
No. of reflections9346
No. of parameters605
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 1.37

Computer programs: EXPOSE in IPDS (Stoe & Cie, 1999), CELL in IPDS (Stoe & Cie, 1999), INTEGRATE in IPDS (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—Fe1.778 (5)C4—Fe2.003 (5)
C2—Fe1.753 (6)Fe—P12.2389 (14)
C3—Fe1.792 (5)Fe—Pt2.5555 (9)
C4—N11.180 (7)P2—Pt2.3278 (13)
C4—Pt1.987 (6)P3—Pt2.2680 (13)
N1—C4—Pt139.4 (4)Pt—C4—Fe79.6 (2)
N1—C4—Fe140.7 (4)C4—N1—C5121.1 (4)
 

Acknowledgements

The authors thank the CNRS for financial support.

References

First citationBasset, J. M., Barker, G. K., Green, M., Howard, J. A. K., Stone, F. G. A. & Wolsey, W. C. (1981). J. Chem. Soc. Dalton Trans. pp. 219–227.  Google Scholar
First citationChen, P., Peng, Y., Jia, C. & Qu, J. (2010). Eur. J. Inorg. Chem. pp. 5239–5246.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741–750.  CSD CrossRef Web of Science Google Scholar
First citationKnorr, M., Faure, T. & Braunstein, P. (1993). J. Organomet. Chem. 447, C4–C6.  CrossRef CAS Web of Science Google Scholar
First citationKnorr, M., Jourdain, I., Crini, G., Frank, K., Sachdev, H. & Strohmann, C. (2002). Eur. J. Inorg. Chem. pp. 2419–2426.  CrossRef Google Scholar
First citationKnorr, M., Jourdain, I., Lentz, D., Willemsen, S. & Strohmann, C. (2003). J. Organomet. Chem. 684, 216–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnorr, M. & Strohmann, C. (2000). Eur. J. Inorg. Chem. pp. 241–252.  CrossRef Google Scholar
First citationRatliff, K. S., Fanwick, P. E. & Kubiak, C. P. (1990). Polyhedron, 9, 2651–2653.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m331-m332
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds