organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-{2,4-Dimeth­­oxy-6-[(E)-4-meth­­oxy­styr­yl]benzyl­­idene}quinuclidin-3-one

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA, and cDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
*Correspondence e-mail: pacrooks@uams.edu

(Received 9 November 2011; accepted 9 February 2012; online 17 February 2012)

The crystal structure of the title compound, C25H27NO4, shows the presence of a double bond with Z geometry which connects the quinuclidin-3-one ring and the trimeth­oxy­resveratrol moiety. The dihedral angle between the two benzene rings in the stilbene skeleton is 32.80 (8)°.

Related literature

For related biological activity literature, see: Aggarwal et al. (2004[Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783-2840.]); Pettit et al. (1995[Pettit, G. R., Singh, S. B., Boyd, M. R., Hamel, E., Pettit, R. K., Schmidt, J. M. & Hogan, F. (1995). J. Med. Chem. 38, 1666-1672.]). For related structure–activity studies, see: Cushman et al. (1991[Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579-2588.]). For related pharmaco­kinetic and pharmacodynamic studies, see: Jeandet et al. (1979[Jeandet, P., Bessis, R., Maume, B. F., Meunier, P., Peyron, D. & Trollat, P. J. (1979). J. Agric. Food Chem. 27, 984-989.]); Trela et al. (1996[Trela, B. C. & Waterhouse, A. L. (1996). J. Agric. Food Chem. 44, 1253-1257.]).

[Scheme 1]

Experimental

Crystal data
  • C25H27NO4

  • Mr = 405.48

  • Orthorhombic, P c a 21

  • a = 36.1068 (1) Å

  • b = 6.8748 (1) Å

  • c = 8.4813 (4) Å

  • V = 2105.29 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.26 × 0.20 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.978, Tmax = 0.993

  • 39211 measured reflections

  • 2554 independent reflections

  • 2313 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.04

  • 2554 reflections

  • 274 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Resveratrol (trans-3,4',5-trihydroxystilbene) is a phytochemical which is found in more than 70 plant species. This phytolaxine was proven to have diverse biological beneficial activities with no adverse effects in animal models (Aggarwal et al. 2004, Pettit et al. 1995). Resveratrol was also reported to be a potential cancer chemotherapeutic agent based on its striking inhibitory effects on cellular events associated with cancer initiation, promotion, and progression (Cushman et al. 1991). Unfortunately, resveratrol cannot be used as a drug because of its chemical and metabolic instability (Jeandet et al. 1979, Trela et al. 1996). trans-3,4',5-trimethoxystilbene, an analog of resveratrol, was found to have greater chemical and metabolic stability with improved anticancer activity. Based on several SAR studies on trimethoxyresveratrol analogues we have designed and synthesized a series of novel trimethoxy resveratrol analogues that are expected to function as potent cytotoxic agents against breast and lung cancer cells. The X-ray analysis of the titled compound was performed to determine the geometry (i.e. E versus Z) of the double bond connecting the quinuclidin-3-one ring and the trimethoxyresveratrol moiety, and to obtain detailed information on the structural conformation of the molecule that may be useful in structure-activity relationship (SAR) analysis. The title compound was synthesized in two steps. In step one, the formylation of trans-3,4',5-trimethoxystilbene was achieved with a slight excess of phosphorous oxychloride in dimethylformamide at 0 °C to yield trans-2-formyl-3,4',5-trimethoxystilbene. In step two, a mixture of trans-2-formyl-3, 4', 5-trimethoxystilbene and quinuclidin-3-one were refluxed in ethanol in the presence of 10% NaOH to yield the title compound, (Z)-2-(2,4-dimethoxy-6-((E)-4-methoxystyryl) benzylidene)quinuclidin-3-one in 40% yield.

The X-ray analysis studies revealed that the double bond connecting the quinuclidin-3-one ring and the trimethoxyresveratrol moiety had the Z geometry. The dihederal angle between the two phenyl rings in the stilbene skeletone is 32.80 (8)°. The crystal packing is stabilized by van der Waals forces with no intermolecular hydrogen bonding interactions.

Related literature top

For related biological activity literature, see: Aggarwal et al. (2004); Pettit et al. (1995). For related structure–activity studies, see: Cushman et al. (1991). For related pharmacokinetic and pharmacodynamic studies, see: Jeandet et al. (1979); & Trela et al. (1996).

Experimental top

A mixture of trans-2-formyl-3,4',5-trimethoxystilbene (150 mg, 1 mmol), quinuclidin-3-one (89.44 mg, 1.1 mmol), 10% NaOH and ethanol (10 ml) was refluxed for 5 hrs and completion of reaction was monitored by TLC. The resulting reaction mixture was concentrated to remove ethanol and extracted into ethyl acetate; the ethyl acetate extract washed with water to remove residual NaOH. The organic layer was then dried over anhydrous magnesium sulfate, filtered, and the solvent evaporated to afford the crude product. Purification was achieved by flash silica gel chromatography eluting with 4:1 hexane/ethyl acetate as moblile phase. The title compound, (Z)-2-(2,4-dimethoxy-6-((E)-4-methoxystyryl) benzylidene)quinuclidin-3-one, was crystallized from methanol to afford a white crystalline product which was suitable for X-ray analysis. 1H NMR (DMSO-d6): δ 1.96–1.97 (d, J=3 Hz, 4H), 2.63 (s, 1H), 2.90–2.92 (m, J=6 Hz, 4H), 3.72–3.82 (m, 6H), 3.86 (s, 3H), 6.39–6.40 (d, J=3 Hz, 1H), 6.78–6.79 (d, J=3 Hz, 1H), 6.86–6.89 (d, J=9 Hz, 2H), 6.95–6.97 (d, J=6 Hz, 2H), 7.26 (s, 1H), 7.38–7.40 (d, J=6 Hz, 2H), p.p.m.. 13C NMR (DMSO-d6): δ 26.1, 41.0, 48.2, 49.7, 55.6, 55.7, 55.9, 97.9, 101.6, 114.3, 123.9, 125.4, 127.9, 128.0, 129.8, 130.2, 138.4, 158.8, 159.5, 160.9. M.p: 178–180 °C.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.Since this is a light atom structure determined with Mo Kα radiation, there is no anomalous signal with which to refine a meaningful Flack parameter. For this reason, Friedel pairs were merged for the final rounds of refinement.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Z)-2-{2,4-Dimethoxy-6-[(E)-4- methoxystyryl]benzylidene}quinuclidin-3-one top
Crystal data top
C25H27NO4F(000) = 864
Mr = 405.48Dx = 1.279 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2806 reflections
a = 36.1068 (1) Åθ = 1.0–27.5°
b = 6.8748 (1) ŵ = 0.09 mm1
c = 8.4813 (4) ÅT = 90 K
V = 2105.29 (10) Å3Plate, pale yellow
Z = 40.26 × 0.20 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2554 independent reflections
Radiation source: fine-focus sealed tube2313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.1 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scans at fixed χ = 55°h = 4646
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 88
Tmin = 0.978, Tmax = 0.993l = 1011
39211 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.055P)2 + 0.423P]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C25H27NO4V = 2105.29 (10) Å3
Mr = 405.48Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 36.1068 (1) ŵ = 0.09 mm1
b = 6.8748 (1) ÅT = 90 K
c = 8.4813 (4) Å0.26 × 0.20 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2554 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2313 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.993Rint = 0.051
39211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2554 reflectionsΔρmin = 0.19 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38605 (5)0.0394 (3)0.0016 (2)0.0199 (4)
C20.41142 (5)0.0668 (3)0.0926 (2)0.0209 (4)
H20.43600.02030.10520.025*
O30.42772 (4)0.3314 (2)0.25036 (18)0.0242 (3)
C30.40072 (5)0.2399 (3)0.1643 (2)0.0208 (4)
C40.36460 (5)0.3113 (3)0.1488 (2)0.0213 (4)
H40.35750.43020.19710.026*
O50.30344 (4)0.2577 (2)0.0355 (2)0.0273 (4)
C50.33950 (5)0.2038 (3)0.0609 (2)0.0210 (4)
C60.34939 (5)0.0292 (3)0.0138 (2)0.0194 (4)
C70.32098 (5)0.0712 (3)0.1075 (3)0.0208 (4)
H70.30070.12750.05240.025*
C80.32148 (5)0.0892 (3)0.2640 (3)0.0213 (4)
N90.34916 (5)0.0003 (3)0.3624 (2)0.0275 (4)
C100.36272 (6)0.1427 (4)0.4797 (3)0.0343 (5)
H10A0.37520.25090.42390.041*
H10B0.38120.07930.54880.041*
C110.33104 (6)0.2257 (4)0.5823 (3)0.0323 (5)
H11A0.33540.19390.69460.039*
H11B0.33010.36900.57140.039*
C120.29427 (6)0.1356 (4)0.5273 (3)0.0312 (5)
H120.27280.18860.58830.037*
O130.26589 (4)0.2760 (3)0.2957 (2)0.0409 (4)
C130.29067 (5)0.1800 (3)0.3542 (3)0.0264 (4)
C140.29709 (7)0.0863 (4)0.5442 (3)0.0414 (6)
H14A0.27420.14820.50400.050*
H14B0.29990.12140.65670.050*
C150.33094 (7)0.1599 (4)0.4492 (3)0.0398 (6)
H15A0.34900.22020.52230.048*
H15B0.32280.26080.37360.048*
C160.39711 (5)0.2215 (3)0.0766 (2)0.0199 (4)
H160.37830.31450.09860.024*
C170.43187 (5)0.2647 (3)0.1187 (3)0.0206 (4)
H170.45020.17090.09330.025*
C180.44483 (5)0.4405 (3)0.1996 (2)0.0188 (4)
C190.42275 (5)0.6030 (3)0.2311 (2)0.0207 (4)
H190.39780.60410.19540.025*
C200.43624 (5)0.7628 (3)0.3131 (3)0.0207 (4)
H200.42070.87140.33320.025*
O210.48955 (3)0.9124 (2)0.4451 (2)0.0257 (3)
C210.47287 (5)0.7621 (3)0.3656 (2)0.0201 (4)
C220.49550 (5)0.6031 (3)0.3342 (2)0.0215 (4)
H220.52050.60300.36930.026*
C230.48175 (5)0.4451 (3)0.2520 (2)0.0205 (4)
H230.49750.33770.23050.025*
C240.29163 (6)0.4419 (3)0.0932 (3)0.0346 (6)
H24A0.29250.44190.20860.052*
H24B0.26620.46690.05830.052*
H24C0.30800.54370.05230.052*
C250.41767 (6)0.5036 (3)0.3349 (3)0.0248 (4)
H25A0.41010.60470.26010.037*
H25B0.43900.54970.39600.037*
H25C0.39710.47450.40640.037*
C260.46609 (6)1.0558 (3)0.5147 (3)0.0263 (4)
H26A0.45261.12510.43170.039*
H26B0.48121.14840.57470.039*
H26C0.44840.99230.58560.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (9)0.0204 (9)0.0179 (9)0.0000 (7)0.0011 (8)0.0002 (8)
C20.0177 (8)0.0241 (9)0.0209 (10)0.0021 (7)0.0001 (7)0.0010 (8)
O30.0200 (6)0.0251 (7)0.0275 (8)0.0008 (5)0.0031 (6)0.0089 (6)
C30.0211 (9)0.0230 (9)0.0184 (10)0.0023 (7)0.0002 (8)0.0020 (8)
C40.0218 (9)0.0199 (9)0.0222 (10)0.0010 (7)0.0013 (8)0.0037 (8)
O50.0195 (6)0.0257 (7)0.0367 (9)0.0073 (6)0.0054 (6)0.0102 (7)
C50.0186 (8)0.0233 (9)0.0210 (10)0.0021 (7)0.0002 (8)0.0020 (8)
C60.0197 (9)0.0202 (9)0.0185 (9)0.0008 (7)0.0008 (7)0.0007 (8)
C70.0184 (8)0.0192 (9)0.0247 (10)0.0001 (7)0.0029 (8)0.0018 (9)
C80.0169 (8)0.0207 (9)0.0261 (10)0.0024 (7)0.0010 (8)0.0039 (8)
N90.0258 (8)0.0354 (10)0.0213 (8)0.0083 (8)0.0045 (8)0.0037 (8)
C100.0235 (10)0.0549 (15)0.0245 (11)0.0018 (10)0.0039 (9)0.0091 (11)
C110.0255 (10)0.0474 (13)0.0242 (11)0.0016 (9)0.0036 (9)0.0080 (11)
C120.0187 (9)0.0482 (13)0.0268 (11)0.0008 (9)0.0011 (8)0.0106 (11)
O130.0304 (8)0.0562 (11)0.0363 (9)0.0215 (8)0.0095 (7)0.0178 (9)
C130.0197 (9)0.0300 (10)0.0296 (11)0.0041 (8)0.0040 (9)0.0113 (10)
C140.0387 (12)0.0516 (15)0.0338 (13)0.0093 (11)0.0032 (11)0.0046 (12)
C150.0522 (14)0.0343 (12)0.0329 (13)0.0067 (11)0.0044 (12)0.0053 (11)
C160.0214 (9)0.0202 (9)0.0182 (9)0.0004 (7)0.0014 (8)0.0013 (8)
C170.0199 (8)0.0204 (9)0.0214 (10)0.0002 (7)0.0004 (8)0.0002 (8)
C180.0188 (8)0.0201 (9)0.0174 (9)0.0023 (7)0.0019 (7)0.0007 (8)
C190.0196 (8)0.0226 (10)0.0199 (10)0.0015 (7)0.0019 (7)0.0003 (8)
C200.0202 (8)0.0198 (9)0.0221 (10)0.0020 (7)0.0003 (8)0.0011 (8)
O210.0209 (6)0.0221 (7)0.0342 (8)0.0006 (5)0.0030 (6)0.0099 (7)
C210.0216 (9)0.0193 (9)0.0193 (9)0.0041 (7)0.0008 (8)0.0027 (8)
C220.0173 (8)0.0241 (9)0.0230 (10)0.0013 (7)0.0013 (8)0.0001 (9)
C230.0192 (8)0.0203 (9)0.0220 (9)0.0008 (7)0.0015 (8)0.0020 (8)
C240.0294 (10)0.0271 (11)0.0473 (15)0.0112 (8)0.0071 (10)0.0119 (11)
C250.0264 (9)0.0228 (10)0.0251 (11)0.0009 (8)0.0007 (9)0.0072 (9)
C260.0291 (10)0.0222 (10)0.0275 (11)0.0026 (8)0.0022 (9)0.0069 (9)
Geometric parameters (Å, º) top
C1—C21.403 (3)C14—C151.549 (4)
C1—C61.411 (3)C14—H14A0.9900
C1—C161.472 (3)C14—H14B0.9900
C2—C31.391 (3)C15—H15A0.9900
C2—H20.9500C15—H15B0.9900
O3—C31.371 (2)C16—C171.338 (3)
O3—C251.431 (2)C16—H160.9500
C3—C41.400 (3)C17—C181.466 (3)
C4—C51.387 (3)C17—H170.9500
C4—H40.9500C18—C191.398 (3)
O5—C51.371 (2)C18—C231.405 (3)
O5—C241.422 (2)C19—C201.388 (3)
C5—C61.403 (3)C19—H190.9500
C6—C71.470 (3)C20—C211.395 (3)
C7—C81.333 (3)C20—H200.9500
C7—H70.9500O21—C211.373 (2)
C8—N91.440 (3)O21—C261.428 (2)
C8—C131.488 (3)C21—C221.391 (3)
N9—C151.476 (3)C22—C231.383 (3)
N9—C101.482 (3)C22—H220.9500
C10—C111.546 (3)C23—H230.9500
C10—H10A0.9900C24—H24A0.9800
C10—H10B0.9900C24—H24B0.9800
C11—C121.538 (3)C24—H24C0.9800
C11—H11A0.9900C25—H25A0.9800
C11—H11B0.9900C25—H25B0.9800
C12—C131.505 (3)C25—H25C0.9800
C12—C141.536 (4)C26—H26A0.9800
C12—H121.0000C26—H26B0.9800
O13—C131.217 (3)C26—H26C0.9800
C2—C1—C6119.32 (18)C12—C14—H14B109.8
C2—C1—C16120.87 (16)C15—C14—H14B109.8
C6—C1—C16119.81 (17)H14A—C14—H14B108.3
C3—C2—C1120.27 (17)N9—C15—C14111.6 (2)
C3—C2—H2119.9N9—C15—H15A109.3
C1—C2—H2119.9C14—C15—H15A109.3
C3—O3—C25117.78 (15)N9—C15—H15B109.3
O3—C3—C2115.32 (16)C14—C15—H15B109.3
O3—C3—C4123.48 (17)H15A—C15—H15B108.0
C2—C3—C4121.20 (17)C17—C16—C1124.32 (17)
C5—C4—C3118.17 (17)C17—C16—H16117.8
C5—C4—H4120.9C1—C16—H16117.8
C3—C4—H4120.9C16—C17—C18127.40 (17)
C5—O5—C24118.14 (16)C16—C17—H17116.3
O5—C5—C4124.11 (17)C18—C17—H17116.3
O5—C5—C6113.72 (17)C19—C18—C23117.55 (17)
C4—C5—C6122.16 (17)C19—C18—C17124.46 (16)
C5—C6—C1118.86 (17)C23—C18—C17117.98 (16)
C5—C6—C7117.92 (16)C20—C19—C18121.85 (17)
C1—C6—C7123.20 (18)C20—C19—H19119.1
C8—C7—C6124.95 (19)C18—C19—H19119.1
C8—C7—H7117.5C19—C20—C21119.34 (18)
C6—C7—H7117.5C19—C20—H20120.3
C7—C8—N9123.15 (19)C21—C20—H20120.3
C7—C8—C13122.75 (19)C21—O21—C26117.55 (14)
N9—C8—C13113.58 (18)O21—C21—C22115.33 (16)
C8—N9—C15107.31 (17)O21—C21—C20124.75 (17)
C8—N9—C10109.56 (17)C22—C21—C20119.89 (17)
C15—N9—C10107.79 (18)C23—C22—C21120.20 (17)
N9—C10—C11112.23 (17)C23—C22—H22119.9
N9—C10—H10A109.2C21—C22—H22119.9
C11—C10—H10A109.2C22—C23—C18121.16 (18)
N9—C10—H10B109.2C22—C23—H23119.4
C11—C10—H10B109.2C18—C23—H23119.4
H10A—C10—H10B107.9O5—C24—H24A109.5
C12—C11—C10108.62 (18)O5—C24—H24B109.5
C12—C11—H11A110.0H24A—C24—H24B109.5
C10—C11—H11A110.0O5—C24—H24C109.5
C12—C11—H11B110.0H24A—C24—H24C109.5
C10—C11—H11B110.0H24B—C24—H24C109.5
H11A—C11—H11B108.3O3—C25—H25A109.5
C13—C12—C14107.4 (2)O3—C25—H25B109.5
C13—C12—C11106.79 (19)H25A—C25—H25B109.5
C14—C12—C11108.32 (19)O3—C25—H25C109.5
C13—C12—H12111.4H25A—C25—H25C109.5
C14—C12—H12111.4H25B—C25—H25C109.5
C11—C12—H12111.4O21—C26—H26A109.5
O13—C13—C8124.6 (2)O21—C26—H26B109.5
O13—C13—C12124.8 (2)H26A—C26—H26B109.5
C8—C13—C12110.61 (18)O21—C26—H26C109.5
C12—C14—C15109.2 (2)H26A—C26—H26C109.5
C12—C14—H14A109.8H26B—C26—H26C109.5
C15—C14—H14A109.8
C6—C1—C2—C31.2 (3)C10—C11—C12—C1459.0 (3)
C16—C1—C2—C3179.23 (18)C7—C8—C13—O1313.8 (3)
C25—O3—C3—C2176.17 (18)N9—C8—C13—O13174.2 (2)
C25—O3—C3—C43.3 (3)C7—C8—C13—C12165.8 (2)
C1—C2—C3—O3179.94 (18)N9—C8—C13—C126.2 (3)
C1—C2—C3—C40.5 (3)C14—C12—C13—O13125.5 (2)
O3—C3—C4—C5178.81 (19)C11—C12—C13—O13118.5 (2)
C2—C3—C4—C50.6 (3)C14—C12—C13—C854.1 (2)
C24—O5—C5—C44.7 (3)C11—C12—C13—C861.9 (2)
C24—O5—C5—C6174.0 (2)C13—C12—C14—C1558.5 (3)
C3—C4—C5—O5179.51 (19)C11—C12—C14—C1556.5 (3)
C3—C4—C5—C61.0 (3)C8—N9—C15—C1456.1 (3)
O5—C5—C6—C1178.92 (18)C10—N9—C15—C1461.8 (2)
C4—C5—C6—C10.2 (3)C12—C14—C15—N93.7 (3)
O5—C5—C6—C70.2 (3)C2—C1—C16—C1725.6 (3)
C4—C5—C6—C7178.45 (19)C6—C1—C16—C17154.9 (2)
C2—C1—C6—C50.9 (3)C1—C16—C17—C18178.61 (19)
C16—C1—C6—C5179.58 (18)C16—C17—C18—C197.2 (3)
C2—C1—C6—C7179.48 (19)C16—C17—C18—C23171.5 (2)
C16—C1—C6—C71.0 (3)C23—C18—C19—C200.9 (3)
C5—C6—C7—C8111.4 (2)C17—C18—C19—C20177.7 (2)
C1—C6—C7—C867.3 (3)C18—C19—C20—C210.1 (3)
C6—C7—C8—N94.3 (4)C26—O21—C21—C22164.65 (18)
C6—C7—C8—C13175.52 (18)C26—O21—C21—C2017.1 (3)
C7—C8—N9—C15108.9 (2)C19—C20—C21—O21178.75 (19)
C13—C8—N9—C1563.0 (2)C19—C20—C21—C220.6 (3)
C7—C8—N9—C10134.3 (2)O21—C21—C22—C23178.73 (18)
C13—C8—N9—C1053.7 (2)C20—C21—C22—C230.4 (3)
C8—N9—C10—C1157.3 (2)C21—C22—C23—C180.5 (3)
C15—N9—C10—C1159.2 (2)C19—C18—C23—C221.1 (3)
N9—C10—C11—C121.3 (3)C17—C18—C23—C22177.61 (19)
C10—C11—C12—C1356.4 (2)

Experimental details

Crystal data
Chemical formulaC25H27NO4
Mr405.48
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)90
a, b, c (Å)36.1068 (1), 6.8748 (1), 8.4813 (4)
V3)2105.29 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.20 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
39211, 2554, 2313
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.04
No. of reflections2554
No. of parameters274
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant No. RO1 CA140409.

References

First citationAggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783–2840.  Web of Science PubMed CAS Google Scholar
First citationCushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579–2588.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJeandet, P., Bessis, R., Maume, B. F., Meunier, P., Peyron, D. & Trollat, P. J. (1979). J. Agric. Food Chem. 27, 984–989.  PubMed Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPettit, G. R., Singh, S. B., Boyd, M. R., Hamel, E., Pettit, R. K., Schmidt, J. M. & Hogan, F. (1995). J. Med. Chem. 38, 1666–1672.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrela, B. C. & Waterhouse, A. L. (1996). J. Agric. Food Chem. 44, 1253–1257.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds