organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o864-o865

8-Benz­yl­oxy-2-methyl-3-(2-methyl­phenyl)quinazolin-4(3H)-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 February 2012; accepted 18 February 2012; online 29 February 2012)

In the title methaqua­lone analogue, C23H20N2O2, the planes of the terminal aromatic rings [dihedral angle between them = 64.52 (7)°] approximately face the fused-ring methyl group and both are twisted with respect to the pyrimidine plane (r.m.s. deviation = 0.028 Å), forming dihedral angles of 86.9 (3) (with the 2-tolyl ring) and 65.57 (7)°. The 2-tolyl residue is disordered over two almost coplanar but opposite orientations with the major component having a site-occupancy factor of 0.893 (3). The three-dimensional crystal packing is consolidated by C—H⋯O, C—H⋯π and ππ [2-tol­yl–2-tolyl centroid–centroid distance = 3.8099 (6) Å] inter­actions.

Related literature

For recent studies on the synthesis, drug discovery and crystal structures of quinazoline-4(3H)-one derivatives, see: El-Azab et al. (2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.], 2012[El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327-333.]). For the anti-convulsant activity of the title methaqua­lone analogue, see: El-Azab et al. (2011[El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-925.]). For a related structure, see: Stephenson et al. (2011[Stephenson, K. A., Wilson, A. A., Houle, S. & Vasdev, N. (2011). Bioorg. Med. Chem. Lett. 21, 5506-5509.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20N2O2

  • Mr = 356.41

  • Monoclinic, P 21 /c

  • a = 18.2611 (3) Å

  • b = 7.6266 (1) Å

  • c = 13.2148 (2) Å

  • β = 91.094 (2)°

  • V = 1840.09 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.967, Tmax = 0.998

  • 7568 measured reflections

  • 3775 independent reflections

  • 3559 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.121

  • S = 1.00

  • 3775 reflections

  • 245 parameters

  • 43 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.54 3.3250 (15) 140
C17—H17BCg1ii 0.99 2.62 3.5086 (16) 150
C22—H22⋯Cg1iii 0.95 2.77 3.5692 (16) 143
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinazoline-4(3H)-one derivatives are known for their various biological activities (El-Azab et al., 2012, 2010). The title methaqualone analogue, 8-benzyloxy-2-methyl-3-(2-methylphenyl)-4(3H)-quinazolinone (I), has been investigated previously for its anti-convulsant activity (El-Azab et al., 2011). Herein, its crystal and molecular structure is described. A related structure with a similar conformation has been reported recently (Stephenson et al., 2011).

In (I), Fig. 1, the 2-tolyl group is orthogonal to the pyrimidine ring [r.m.s. deviation = 0.028 Å] forming a dihedral angle of 87.86 (6)°; the equivalent angle for the minor component of the disordered 2-tolyl ring = 86.9 (3)°. The phenyl ring of the benzyloxy residue is also twisted out of this plane, forming a dihedral angle of 65.57 (7)°. To a first approximation the planes through the terminal rings face towards the methyl group with the dihedral angle between them being 64.52 (7)°.

In the crystal packing, C—H···O and C—H···π interactions, Table 1, combine with ππ [ring centroid(2-tolyl)-to-centroid(2-tolyl)i distance = 3.8099 (6) Å for symmetry operation i: 2 - x, 2 - y, 1 - z] interactions to consolidate molecules into the three-dimensional architecture, Fig. 2.

Related literature top

For recent studies on the synthesis, drug discovery and crystal structures of quinazoline-4(3H)-one derivatives, see: El-Azab et al. (2010, 2012). For the anti-convulsant activity of the title methaqualone analogue, see: El-Azab et al. (2011). For a related structure, see: Stephenson et al. (2011).

Experimental top

A mixture of 8-hydroxymethaqualone (532 mg, 2 mmol) and benzyl chloride (266 mg, 2.1 mmol) in acetone (15 ml) containing anhydrous potassium carbonate (415 mg, 3 mmol) was heated under reflux for 10 h. The reaction mixture was filtered while hot, the solvent was removed under reduced pressure, and the solid obtained was dried and recrystallized from AcOH as colourless prisms. Yield 86%; M.pt: 449–451 K. 1H NMR (500 MHz, CDCl3): δ 7.89 (d, 1H, J = 8.0 Hz), 7.53 (d, 2H, J = 7.0 Hz), 7.41–7.31 (m, 7H), 7.22 (d, 1H, J = 8.0 Hz), 7.17 (d, 1H, J = 7.5 Hz), 5.40 (s, 2H), 2.27 (s, 3H), 2.15 (s, 3H). 13C NMR (CDCl3): δ 17.4, 24.3, 71.3, 117.1, 119.0, 122.1, 126.6, 127.0, 127.6, 127.9, 128.0, 128.6, 129.5, 131.5, 135.3, 136.8, 137.0, 138.8, 153.3, 153.6, 161.5 p.p.m.. MS (70 eV): m/z = 356.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The 2-tolyl ring is disordered over two co-planar positions with the methyl group being orientated in opposite directions. The benzene rings were refined as rigid hexagons with C—C = 1.39 Å. The major component refined to a site occupancy factor of 0.893 (3). The C—C distances were restrained to ±0.01 Å, of each other. The anisotropic displacement parameters were restrained to be nearly isotropic, and those of the primed carbon atoms were equated to those of unprimed atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The minor disorder component of the toluyl ring is not shown.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents of (I). The C—H···O, C—H···π and ππ interactions are shown as orange, bronw and purple dashed lines, respectively.
8-Benzyloxy-2-methyl-3-(2-methylphenyl)quinazolin-4(3H)-one top
Crystal data top
C23H20N2O2F(000) = 752
Mr = 356.41Dx = 1.287 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4269 reflections
a = 18.2611 (3) Åθ = 3.3–76.3°
b = 7.6266 (1) ŵ = 0.66 mm1
c = 13.2148 (2) ÅT = 100 K
β = 91.094 (2)°Prism, colourless
V = 1840.09 (5) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3775 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3559 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 4.8°
ω scanh = 1522
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 99
Tmin = 0.967, Tmax = 0.998l = 1615
7568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0589P)2 + 1.3045P]
where P = (Fo2 + 2Fc2)/3
3775 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.44 e Å3
43 restraintsΔρmin = 0.39 e Å3
Crystal data top
C23H20N2O2V = 1840.09 (5) Å3
Mr = 356.41Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.2611 (3) ŵ = 0.66 mm1
b = 7.6266 (1) ÅT = 100 K
c = 13.2148 (2) Å0.35 × 0.30 × 0.25 mm
β = 91.094 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3775 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3559 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.998Rint = 0.015
7568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04843 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
3775 reflectionsΔρmin = 0.39 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.90142 (6)0.63543 (15)0.61822 (8)0.0249 (3)
O20.61946 (5)0.31632 (14)0.48348 (7)0.0199 (2)
N10.84939 (7)0.63272 (18)0.45982 (9)0.0226 (3)
N20.73780 (6)0.48656 (16)0.42164 (9)0.0182 (3)
C10.85181 (8)0.58540 (19)0.56229 (10)0.0194 (3)
C20.79063 (7)0.47545 (18)0.59336 (10)0.0175 (3)
C30.78755 (8)0.41602 (19)0.69377 (11)0.0209 (3)
H30.82630.44070.74060.025*
C40.72731 (8)0.3212 (2)0.72336 (11)0.0230 (3)
H40.72480.27950.79100.028*
C50.66974 (8)0.28556 (19)0.65475 (11)0.0214 (3)
H50.62820.22180.67660.026*
C60.67287 (8)0.34249 (18)0.55538 (10)0.0180 (3)
C70.73479 (7)0.43755 (18)0.52274 (10)0.0166 (3)
C80.79355 (8)0.5776 (2)0.39407 (11)0.0208 (3)
C90.80026 (9)0.6254 (3)0.28457 (11)0.0311 (4)
H9A0.76170.56620.24490.047*
H9B0.84830.58850.26050.047*
H9C0.79520.75260.27670.047*
C100.90451 (5)0.75133 (12)0.42618 (8)0.0187 (4)0.893 (3)
C110.97023 (6)0.69096 (11)0.38786 (9)0.0231 (4)0.893 (3)
H110.97980.56860.38520.028*0.893 (3)
C121.02189 (5)0.80957 (15)0.35339 (9)0.0275 (4)0.893 (3)
H121.06680.76830.32720.033*0.893 (3)
C131.00783 (5)0.98854 (14)0.35724 (9)0.0288 (4)0.893 (3)
H131.04311.06960.33370.035*0.893 (3)
C140.94210 (6)1.04890 (10)0.39556 (9)0.0263 (4)0.893 (3)
H140.93251.17120.39820.032*0.893 (3)
C150.89044 (5)0.93030 (14)0.43003 (8)0.0210 (4)0.893 (3)
C160.81947 (10)0.9980 (2)0.47494 (14)0.0272 (4)0.893 (3)
H16A0.81831.12630.47060.041*0.893 (3)
H16B0.81700.96210.54600.041*0.893 (3)
H16C0.77760.94910.43710.041*0.893 (3)
C10'0.8800 (5)0.8186 (10)0.4385 (7)0.0187 (4)0.107 (3)
C11'0.8473 (4)0.9812 (12)0.4522 (7)0.0231 (4)0.107 (3)
H11'0.79970.98840.47960.028*0.107 (3)
C12'0.8843 (5)1.1334 (9)0.4260 (8)0.0275 (4)0.107 (3)
H12'0.86201.24450.43540.033*0.107 (3)
C13'0.9540 (5)1.1229 (10)0.3860 (8)0.0288 (4)0.107 (3)
H13'0.97931.22690.36810.035*0.107 (3)
C14'0.9867 (4)0.9603 (13)0.3722 (8)0.0263 (4)0.107 (3)
H14'1.03440.95310.34490.032*0.107 (3)
C15'0.9497 (5)0.8081 (10)0.3984 (7)0.0210 (4)0.107 (3)
C16'0.9817 (12)0.638 (3)0.3910 (16)0.0272 (4)0.107 (3)
H16D1.03090.64800.36310.041*0.107 (3)
H16E0.95120.56440.34650.041*0.107 (3)
H16F0.98500.58460.45840.041*0.107 (3)
C170.55629 (8)0.2214 (2)0.51593 (11)0.0215 (3)
H17A0.53140.28720.56990.026*
H17B0.57120.10570.54330.026*
C180.50526 (8)0.19755 (18)0.42653 (11)0.0190 (3)
C190.43504 (8)0.26836 (19)0.42639 (11)0.0223 (3)
H190.41970.33690.48220.027*
C200.38705 (8)0.2392 (2)0.34480 (12)0.0250 (3)
H200.33920.28820.34510.030*
C210.40895 (8)0.1388 (2)0.26318 (11)0.0238 (3)
H210.37620.11830.20780.029*
C220.47930 (8)0.0684 (2)0.26299 (11)0.0226 (3)
H220.49450.00020.20720.027*
C230.52728 (8)0.09802 (19)0.34386 (11)0.0207 (3)
H230.57530.05030.34300.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (5)0.0330 (6)0.0204 (5)0.0064 (4)0.0038 (4)0.0010 (4)
O20.0192 (5)0.0221 (5)0.0185 (5)0.0068 (4)0.0001 (4)0.0020 (4)
N10.0210 (6)0.0291 (7)0.0176 (6)0.0074 (5)0.0013 (5)0.0010 (5)
N20.0185 (6)0.0198 (6)0.0163 (5)0.0020 (5)0.0004 (4)0.0005 (5)
C10.0193 (6)0.0213 (7)0.0175 (6)0.0001 (5)0.0004 (5)0.0013 (5)
C20.0184 (6)0.0159 (6)0.0183 (6)0.0019 (5)0.0006 (5)0.0008 (5)
C30.0242 (7)0.0204 (7)0.0179 (7)0.0012 (6)0.0032 (5)0.0010 (5)
C40.0299 (8)0.0218 (7)0.0173 (6)0.0003 (6)0.0002 (6)0.0047 (6)
C50.0242 (7)0.0182 (7)0.0218 (7)0.0032 (6)0.0024 (6)0.0021 (5)
C60.0197 (7)0.0154 (6)0.0189 (6)0.0005 (5)0.0008 (5)0.0015 (5)
C70.0192 (6)0.0143 (6)0.0163 (6)0.0017 (5)0.0007 (5)0.0007 (5)
C80.0200 (7)0.0245 (7)0.0176 (7)0.0044 (6)0.0017 (5)0.0002 (5)
C90.0302 (8)0.0455 (10)0.0176 (7)0.0165 (7)0.0025 (6)0.0032 (7)
C100.0171 (8)0.0232 (9)0.0157 (7)0.0025 (6)0.0008 (6)0.0019 (6)
C110.0201 (9)0.0283 (11)0.0209 (8)0.0011 (8)0.0000 (6)0.0036 (8)
C120.0183 (8)0.0437 (11)0.0204 (8)0.0057 (7)0.0017 (6)0.0031 (7)
C130.0285 (9)0.0391 (11)0.0187 (8)0.0159 (8)0.0024 (6)0.0024 (7)
C140.0329 (9)0.0265 (9)0.0193 (8)0.0094 (7)0.0059 (6)0.0014 (7)
C150.0209 (8)0.0254 (8)0.0165 (7)0.0004 (7)0.0033 (6)0.0012 (6)
C160.0284 (9)0.0250 (9)0.0284 (9)0.0046 (7)0.0010 (7)0.0032 (7)
C10'0.0171 (8)0.0232 (9)0.0157 (7)0.0025 (6)0.0008 (6)0.0019 (6)
C11'0.0201 (9)0.0283 (11)0.0209 (8)0.0011 (8)0.0000 (6)0.0036 (8)
C12'0.0183 (8)0.0437 (11)0.0204 (8)0.0057 (7)0.0017 (6)0.0031 (7)
C13'0.0285 (9)0.0391 (11)0.0187 (8)0.0159 (8)0.0024 (6)0.0024 (7)
C14'0.0329 (9)0.0265 (9)0.0193 (8)0.0094 (7)0.0059 (6)0.0014 (7)
C15'0.0209 (8)0.0254 (8)0.0165 (7)0.0004 (7)0.0033 (6)0.0012 (6)
C16'0.0284 (9)0.0250 (9)0.0284 (9)0.0046 (7)0.0010 (7)0.0032 (7)
C170.0211 (7)0.0219 (7)0.0217 (7)0.0072 (6)0.0028 (5)0.0011 (6)
C180.0204 (7)0.0160 (6)0.0206 (7)0.0059 (5)0.0029 (5)0.0016 (5)
C190.0231 (7)0.0191 (7)0.0248 (7)0.0020 (6)0.0046 (6)0.0029 (6)
C200.0205 (7)0.0238 (7)0.0307 (8)0.0007 (6)0.0007 (6)0.0001 (6)
C210.0251 (7)0.0231 (7)0.0231 (7)0.0052 (6)0.0018 (6)0.0014 (6)
C220.0268 (7)0.0198 (7)0.0212 (7)0.0037 (6)0.0048 (6)0.0016 (6)
C230.0188 (6)0.0199 (7)0.0237 (7)0.0015 (5)0.0045 (5)0.0010 (6)
Geometric parameters (Å, º) top
O1—C11.2195 (18)C15—C161.5259 (19)
O2—C61.3632 (17)C16—H16A0.9800
O2—C171.4347 (16)C16—H16B0.9800
N1—C81.3919 (18)C16—H16C0.9800
N1—C11.4012 (18)C10'—C11'1.3900
N1—C101.4304 (14)C10'—C15'1.3900
N1—C10'1.552 (6)C11'—C12'1.3900
N2—C81.2906 (19)C11'—H11'0.9500
N2—C71.3893 (17)C12'—C13'1.3900
C1—C21.4620 (19)C12'—H12'0.9500
C2—C71.3993 (19)C13'—C14'1.3900
C2—C31.4043 (19)C13'—H13'0.9500
C3—C41.379 (2)C14'—C15'1.3900
C3—H30.9500C14'—H14'0.9500
C4—C51.402 (2)C15'—C16'1.427 (19)
C4—H40.9500C16'—H16D0.9800
C5—C61.385 (2)C16'—H16E0.9800
C5—H50.9500C16'—H16F0.9800
C6—C71.4173 (19)C17—C181.502 (2)
C8—C91.499 (2)C17—H17A0.9900
C9—H9A0.9800C17—H17B0.9900
C9—H9B0.9800C18—C191.391 (2)
C9—H9C0.9800C18—C231.396 (2)
C10—C111.3900C19—C201.394 (2)
C10—C151.3900C19—H190.9500
C11—C121.3900C20—C211.388 (2)
C11—H110.9500C20—H200.9500
C12—C131.3900C21—C221.392 (2)
C12—H120.9500C21—H210.9500
C13—C141.3900C22—C231.387 (2)
C13—H130.9500C22—H220.9500
C14—C151.3900C23—H230.9500
C14—H140.9500
C6—O2—C17115.74 (11)C15—C14—H14120.0
C8—N1—C1122.33 (12)C14—C15—C10120.0
C8—N1—C10120.55 (11)C14—C15—C16119.61 (10)
C1—N1—C10116.99 (11)C10—C15—C16120.37 (10)
C8—N1—C10'115.1 (4)C11'—C10'—C15'120.0
C1—N1—C10'114.0 (4)C11'—C10'—N1129.3 (6)
C10—N1—C10'26.8 (3)C15'—C10'—N1110.6 (6)
C8—N2—C7117.53 (12)C12'—C11'—C10'120.0
O1—C1—N1120.96 (13)C12'—C11'—H11'120.0
O1—C1—C2124.90 (13)C10'—C11'—H11'120.0
N1—C1—C2114.14 (12)C11'—C12'—C13'120.0
C7—C2—C3121.45 (13)C11'—C12'—H12'120.0
C7—C2—C1118.83 (12)C13'—C12'—H12'120.0
C3—C2—C1119.67 (13)C14'—C13'—C12'120.0
C4—C3—C2118.92 (13)C14'—C13'—H13'120.0
C4—C3—H3120.5C12'—C13'—H13'120.0
C2—C3—H3120.5C13'—C14'—C15'120.0
C3—C4—C5120.71 (13)C13'—C14'—H14'120.0
C3—C4—H4119.6C15'—C14'—H14'120.0
C5—C4—H4119.6C14'—C15'—C10'120.0
C6—C5—C4120.56 (13)C14'—C15'—C16'122.7 (11)
C6—C5—H5119.7C10'—C15'—C16'117.2 (11)
C4—C5—H5119.7C15'—C16'—H16D109.5
O2—C6—C5124.95 (13)C15'—C16'—H16E109.5
O2—C6—C7115.28 (12)H16D—C16'—H16E109.5
C5—C6—C7119.76 (13)C15'—C16'—H16F109.5
N2—C7—C2122.95 (12)H16D—C16'—H16F109.5
N2—C7—C6118.47 (12)H16E—C16'—H16F109.5
C2—C7—C6118.56 (12)O2—C17—C18108.44 (11)
N2—C8—N1123.95 (13)O2—C17—H17A110.0
N2—C8—C9118.85 (13)C18—C17—H17A110.0
N1—C8—C9117.18 (13)O2—C17—H17B110.0
C8—C9—H9A109.5C18—C17—H17B110.0
C8—C9—H9B109.5H17A—C17—H17B108.4
H9A—C9—H9B109.5C19—C18—C23119.29 (14)
C8—C9—H9C109.5C19—C18—C17120.81 (13)
H9A—C9—H9C109.5C23—C18—C17119.86 (13)
H9B—C9—H9C109.5C18—C19—C20120.31 (14)
C11—C10—C15120.0C18—C19—H19119.8
C11—C10—N1121.43 (9)C20—C19—H19119.8
C15—C10—N1118.55 (9)C21—C20—C19120.19 (14)
C10—C11—C12120.0C21—C20—H20119.9
C10—C11—H11120.0C19—C20—H20119.9
C12—C11—H11120.0C20—C21—C22119.59 (14)
C11—C12—C13120.0C20—C21—H21120.2
C11—C12—H12120.0C22—C21—H21120.2
C13—C12—H12120.0C23—C22—C21120.33 (14)
C14—C13—C12120.0C23—C22—H22119.8
C14—C13—H13120.0C21—C22—H22119.8
C12—C13—H13120.0C22—C23—C18120.28 (13)
C13—C14—C15120.0C22—C23—H23119.9
C13—C14—H14120.0C18—C23—H23119.9
C8—N1—C1—O1179.94 (14)C10'—N1—C10—C150.0 (8)
C10—N1—C1—O14.3 (2)C15—C10—C11—C120.0
C10'—N1—C1—O133.8 (4)N1—C10—C11—C12178.35 (11)
C8—N1—C1—C20.5 (2)C10—C11—C12—C130.0
C10—N1—C1—C2175.30 (11)C11—C12—C13—C140.0
C10'—N1—C1—C2145.7 (4)C12—C13—C14—C150.0
O1—C1—C2—C7175.70 (14)C13—C14—C15—C100.0
N1—C1—C2—C73.84 (19)C13—C14—C15—C16178.14 (11)
O1—C1—C2—C31.8 (2)C11—C10—C15—C140.0
N1—C1—C2—C3178.64 (13)N1—C10—C15—C14178.40 (10)
C7—C2—C3—C41.3 (2)C11—C10—C15—C16178.12 (11)
C1—C2—C3—C4176.19 (13)N1—C10—C15—C163.48 (13)
C2—C3—C4—C50.5 (2)C8—N1—C10'—C11'70.9 (7)
C3—C4—C5—C61.1 (2)C1—N1—C10'—C11'77.9 (7)
C17—O2—C6—C50.3 (2)C10—N1—C10'—C11'179.4 (13)
C17—O2—C6—C7179.54 (12)C8—N1—C10'—C15'107.9 (5)
C4—C5—C6—O2179.17 (13)C1—N1—C10'—C15'103.3 (5)
C4—C5—C6—C70.0 (2)C10—N1—C10'—C15'0.6 (5)
C8—N2—C7—C23.1 (2)C15'—C10'—C11'—C12'0.0
C8—N2—C7—C6177.94 (13)N1—C10'—C11'—C12'178.7 (9)
C3—C2—C7—N2176.63 (13)C10'—C11'—C12'—C13'0.0
C1—C2—C7—N25.9 (2)C11'—C12'—C13'—C14'0.0
C3—C2—C7—C62.3 (2)C12'—C13'—C14'—C15'0.0
C1—C2—C7—C6175.14 (12)C13'—C14'—C15'—C10'0.0
O2—C6—C7—N23.42 (19)C13'—C14'—C15'—C16'176.7 (13)
C5—C6—C7—N2177.33 (13)C11'—C10'—C15'—C14'0.0
O2—C6—C7—C2177.57 (12)N1—C10'—C15'—C14'178.9 (7)
C5—C6—C7—C21.7 (2)C11'—C10'—C15'—C16'176.9 (13)
C7—N2—C8—N11.7 (2)N1—C10'—C15'—C16'4.2 (12)
C7—N2—C8—C9177.14 (14)C6—O2—C17—C18177.34 (12)
C1—N1—C8—N23.5 (2)O2—C17—C18—C19118.44 (14)
C10—N1—C8—N2172.17 (13)O2—C17—C18—C2363.87 (17)
C10'—N1—C8—N2142.4 (4)C23—C18—C19—C200.4 (2)
C1—N1—C8—C9175.34 (14)C17—C18—C19—C20177.28 (13)
C10—N1—C8—C99.0 (2)C18—C19—C20—C210.2 (2)
C10'—N1—C8—C938.8 (4)C19—C20—C21—C220.4 (2)
C8—N1—C10—C1192.72 (14)C20—C21—C22—C230.1 (2)
C1—N1—C10—C1191.40 (13)C21—C22—C23—C180.5 (2)
C10'—N1—C10—C11178.4 (8)C19—C18—C23—C220.7 (2)
C8—N1—C10—C1585.66 (14)C17—C18—C23—C22176.98 (13)
C1—N1—C10—C1590.23 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.543.3250 (15)140
C17—H17B···Cg1ii0.992.623.5086 (16)150
C22—H22···Cg1iii0.952.773.5692 (16)143
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H20N2O2
Mr356.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.2611 (3), 7.6266 (1), 13.2148 (2)
β (°) 91.094 (2)
V3)1840.09 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.967, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
7568, 3775, 3559
Rint0.015
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.00
No. of reflections3775
No. of parameters245
No. of restraints43
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.39

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.543.3250 (15)140
C17—H17B···Cg1ii0.992.623.5086 (16)150
C22—H22···Cg1iii0.952.773.5692 (16)143
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–925.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, K. A., Wilson, A. A., Houle, S. & Vasdev, N. (2011). Bioorg. Med. Chem. Lett. 21, 5506–5509.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o864-o865
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds