organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3,5-di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 February 2012; accepted 17 February 2012; online 24 February 2012)

In the mol­ecular structure of the title compound, C15H14ClNO, the amide group forms dihedral angles of 15.8 (2) and 27.2 (2)°, respectively, with the benzoyl and aniline rings, while the angle between the benzoyl and aniline rings is 11.5 (1)°. The crystal structure is stabilized by N—H⋯O hydrogen bonds, which give rise to infinite chains running along the c axis.

Related literature

For studies, including ours, on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720.]); Rodrigues et al. (2011[Rodrigues, V. Z., Fronc, M., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o2903.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]); N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]); N-chloro­aryl­amides, see: Gowda et al. (2003[Gowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51-56.]); Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]); N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO

  • Mr = 259.72

  • Monoclinic, P 21 /c

  • a = 14.2763 (7) Å

  • b = 10.7038 (6) Å

  • c = 9.5245 (4) Å

  • β = 108.087 (5)°

  • V = 1383.52 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Oxford Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.916, Tmax = 0.958

  • 22077 measured reflections

  • 2433 independent reflections

  • 1542 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.152

  • S = 1.03

  • 2433 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.12 (1) 2.948 (2) 163 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Rodrigues et al., 2011; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-chloroarylsulfonamides (Gowda et al., 2003; Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of 4-chloro-N-(3,5-dimethylphenyl)benzamide has been determined (Fig. 1).

In the title compound, one of the m-methyl groups in the aniline ring is positioned syn to the N—H bond, while the other m-methyl group is positioned anti to the N—H bond, the latter and the CO bond being anti to each other, similar to that observed in 4-chloro-N-(3-methylphenyl)benzamide (Rodrigues et al., 2011).

In the title compound, the amide group forms dihedral angles of 15.8 (2)° and 27.2 (2)°, respectively, with the benzoyl and aniline rings, while the angle between the benzoyl and aniline rings is 11.5 (1)°.

In the crystal structure, classical intermolecular N1—H1···O1i hydrogen bonds (Table 1) link the molecules into infinite chains running along the c-axis. Symmetry code: (i) x, -y + 1/2, z - 1/2. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies, including ours, on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Rodrigues et al. (2011); Saeed et al. (2010); N-(aryl)-methanesulfonamides, see: Gowda et al. (2007); N-chloroarylamides, see: Gowda et al. (2003); Jyothi & Gowda (2004); N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by a method similar to the one described by Rodrigues et al. (2011). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Plate like colourless single crystals of the title compound used in the X-ray diffraction studies were obtained by slow evaporation of the solvent from its ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms bound to carbon were placed in calculated positions with C—H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was seen in a difference map and refined isotropically. The Uiso(H) values were set at 1.2Ueq(C-aromatic) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular chains along c-axis are generated by classical intermolecular N—H···O hydrogen bonds which are shown as dashed lines. Other H atoms have been omitted for clarity.
4-Chloro-N-(3,5-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.2763 (7) ÅCell parameters from 2433 reflections
b = 10.7038 (6) Åθ = 0.9–1.0°
c = 9.5245 (4) ŵ = 0.26 mm1
β = 108.087 (5)°T = 295 K
V = 1383.52 (12) Å3Plate, colourless
Z = 40.35 × 0.25 × 0.15 mm
Data collection top
Oxford Xcalibur CCD
diffractometer
2433 independent reflections
Radiation source: fine-focus sealed tube1542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.4340 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scans with κ offsetsh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.916, Tmax = 0.958l = 1111
22077 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0866P)2 + 0.1343P]
where P = (Fo2 + 2Fc2)/3
2433 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C15H14ClNOV = 1383.52 (12) Å3
Mr = 259.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2763 (7) ŵ = 0.26 mm1
b = 10.7038 (6) ÅT = 295 K
c = 9.5245 (4) Å0.35 × 0.25 × 0.15 mm
β = 108.087 (5)°
Data collection top
Oxford Xcalibur CCD
diffractometer
2433 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1542 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.958Rint = 0.036
22077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
2433 reflectionsΔρmin = 0.19 e Å3
169 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45950 (16)0.1593 (2)0.5588 (2)0.0589 (6)
C20.41450 (19)0.2143 (3)0.4238 (3)0.0841 (8)
H20.44740.27690.39020.101*
C30.3222 (2)0.1787 (3)0.3381 (3)0.0940 (9)
H30.29350.21560.24650.113*
C40.27271 (18)0.0882 (3)0.3885 (3)0.0733 (7)
C50.3153 (2)0.0321 (2)0.5211 (3)0.0769 (7)
H50.28160.02940.55490.092*
C60.40845 (18)0.0672 (2)0.6046 (3)0.0717 (7)
H60.43780.02760.69450.086*
C70.55792 (16)0.1969 (2)0.6601 (2)0.0601 (6)
C80.70886 (16)0.3186 (2)0.6783 (2)0.0582 (6)
C90.73635 (18)0.4271 (2)0.6217 (2)0.0664 (6)
H90.69270.46380.53840.080*
C100.82705 (19)0.4817 (2)0.6865 (3)0.0702 (7)
C110.89035 (18)0.4265 (2)0.8120 (3)0.0701 (7)
H110.95130.46320.85760.084*
C120.86517 (17)0.3179 (2)0.8711 (2)0.0643 (6)
C130.77377 (16)0.2640 (2)0.8028 (2)0.0615 (6)
H130.75600.19080.84080.074*
C140.93520 (19)0.2590 (3)1.0067 (3)0.0848 (8)
H14A0.93620.17020.99310.127*
H14B0.91390.27711.09070.127*
H14C1.00020.29221.02270.127*
C150.8581 (2)0.5971 (3)0.6211 (3)0.1037 (10)
H15A0.87840.66060.69570.156*
H15B0.80370.62730.54110.156*
H15C0.91200.57680.58500.156*
N10.61598 (14)0.26628 (19)0.60271 (18)0.0631 (5)
H10.5938 (16)0.283 (2)0.5099 (6)0.070 (7)*
O10.58311 (11)0.16623 (18)0.79101 (16)0.0777 (6)
Cl10.15289 (5)0.04825 (8)0.28458 (9)0.1054 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0569 (13)0.0741 (15)0.0468 (11)0.0012 (12)0.0178 (10)0.0037 (11)
C20.0613 (15)0.119 (2)0.0659 (15)0.0208 (15)0.0113 (12)0.0201 (15)
C30.0700 (17)0.133 (3)0.0692 (16)0.0179 (17)0.0069 (14)0.0241 (16)
C40.0609 (15)0.0874 (18)0.0697 (15)0.0113 (13)0.0174 (13)0.0095 (14)
C50.0791 (18)0.0753 (17)0.0766 (17)0.0167 (14)0.0247 (14)0.0008 (14)
C60.0728 (16)0.0820 (18)0.0591 (14)0.0083 (13)0.0185 (13)0.0053 (12)
C70.0569 (13)0.0793 (16)0.0463 (12)0.0042 (12)0.0192 (11)0.0057 (11)
C80.0559 (13)0.0741 (16)0.0442 (11)0.0000 (11)0.0149 (10)0.0091 (11)
C90.0721 (16)0.0753 (16)0.0491 (12)0.0010 (13)0.0148 (11)0.0028 (11)
C100.0768 (16)0.0743 (17)0.0604 (14)0.0110 (13)0.0227 (13)0.0076 (12)
C110.0584 (14)0.0906 (19)0.0608 (14)0.0109 (13)0.0177 (12)0.0154 (13)
C120.0556 (13)0.0816 (17)0.0549 (13)0.0019 (12)0.0161 (11)0.0087 (12)
C130.0586 (14)0.0726 (15)0.0534 (12)0.0011 (11)0.0176 (11)0.0034 (11)
C140.0606 (16)0.107 (2)0.0763 (16)0.0048 (14)0.0062 (13)0.0045 (15)
C150.115 (2)0.098 (2)0.095 (2)0.0299 (19)0.0264 (18)0.0059 (17)
N10.0596 (11)0.0856 (14)0.0414 (10)0.0081 (10)0.0116 (9)0.0012 (10)
O10.0674 (10)0.1213 (15)0.0447 (9)0.0051 (9)0.0177 (8)0.0041 (9)
Cl10.0723 (5)0.1250 (8)0.1045 (6)0.0281 (4)0.0065 (4)0.0081 (4)
Geometric parameters (Å, º) top
C1—C61.375 (3)C9—C101.379 (3)
C1—C21.378 (3)C9—H90.9300
C1—C71.492 (3)C10—C111.387 (4)
C2—C31.371 (4)C10—C151.511 (4)
C2—H20.9300C11—C121.387 (3)
C3—C41.370 (4)C11—H110.9300
C3—H30.9300C12—C131.390 (3)
C4—C51.359 (4)C12—C141.504 (3)
C4—Cl11.743 (2)C13—H130.9300
C5—C61.373 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O11.230 (2)C15—H15A0.9600
C7—N11.349 (3)C15—H15B0.9600
C8—C91.387 (3)C15—H15C0.9600
C8—C131.387 (3)N1—H10.859 (2)
C8—N11.414 (3)
C6—C1—C2117.6 (2)C9—C10—C11118.3 (2)
C6—C1—C7118.2 (2)C9—C10—C15121.1 (2)
C2—C1—C7124.1 (2)C11—C10—C15120.5 (2)
C3—C2—C1121.3 (2)C12—C11—C10121.7 (2)
C3—C2—H2119.3C12—C11—H11119.1
C1—C2—H2119.3C10—C11—H11119.1
C4—C3—C2119.6 (3)C11—C12—C13118.8 (2)
C4—C3—H3120.2C11—C12—C14120.9 (2)
C2—C3—H3120.2C13—C12—C14120.4 (2)
C5—C4—C3120.4 (2)C8—C13—C12120.4 (2)
C5—C4—Cl1119.7 (2)C8—C13—H13119.8
C3—C4—Cl1119.8 (2)C12—C13—H13119.8
C4—C5—C6119.4 (2)C12—C14—H14A109.5
C4—C5—H5120.3C12—C14—H14B109.5
C6—C5—H5120.3H14A—C14—H14B109.5
C5—C6—C1121.7 (2)C12—C14—H14C109.5
C5—C6—H6119.2H14A—C14—H14C109.5
C1—C6—H6119.2H14B—C14—H14C109.5
O1—C7—N1122.3 (2)C10—C15—H15A109.5
O1—C7—C1120.3 (2)C10—C15—H15B109.5
N1—C7—C1117.38 (18)H15A—C15—H15B109.5
C9—C8—C13119.4 (2)C10—C15—H15C109.5
C9—C8—N1117.9 (2)H15A—C15—H15C109.5
C13—C8—N1122.7 (2)H15B—C15—H15C109.5
C10—C9—C8121.4 (2)C7—N1—C8127.51 (17)
C10—C9—H9119.3C7—N1—H1117.0 (16)
C8—C9—H9119.3C8—N1—H1115.5 (16)
C6—C1—C2—C30.0 (4)N1—C8—C9—C10177.95 (19)
C7—C1—C2—C3177.5 (2)C8—C9—C10—C111.0 (3)
C1—C2—C3—C41.3 (5)C8—C9—C10—C15177.7 (2)
C2—C3—C4—C51.3 (5)C9—C10—C11—C121.1 (4)
C2—C3—C4—Cl1176.6 (2)C15—C10—C11—C12177.5 (2)
C3—C4—C5—C60.1 (4)C10—C11—C12—C130.4 (3)
Cl1—C4—C5—C6177.79 (19)C10—C11—C12—C14179.6 (2)
C4—C5—C6—C11.1 (4)C9—C8—C13—C120.6 (3)
C2—C1—C6—C51.2 (4)N1—C8—C13—C12178.56 (18)
C7—C1—C6—C5176.5 (2)C11—C12—C13—C80.4 (3)
C6—C1—C7—O115.0 (3)C14—C12—C13—C8179.6 (2)
C2—C1—C7—O1162.4 (2)O1—C7—N1—C83.0 (4)
C6—C1—C7—N1165.9 (2)C1—C7—N1—C8176.0 (2)
C2—C1—C7—N116.6 (3)C9—C8—N1—C7151.7 (2)
C13—C8—C9—C100.2 (3)C13—C8—N1—C730.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.12 (1)2.948 (2)163 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14ClNO
Mr259.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.2763 (7), 10.7038 (6), 9.5245 (4)
β (°) 108.087 (5)
V3)1383.52 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerOxford Xcalibur CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.916, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
22077, 2433, 1542
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.152, 1.03
No. of reflections2433
No. of parameters169
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.859 (2)2.115 (7)2.948 (2)163 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. VV and JK thank the Slovak Grant Agencies for their financial support (VEGA Grant Agency of the Slovak Ministry of Education, grant No. 1/0679/11, and the Research and Development Agency of Slovakia, grant No. APVV-0202-10), and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRodrigues, V. Z., Fronc, M., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o2903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds