organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,9,12,15-Tetra­oxa-3,5,8,10,14,16-hexa­aza­tetra­cyclo­[11.3.0.02,6.07,11]hexa­deca-1(16),2,5,7,10,13-hexaen-3-ium-3-olate monohydrate

aXi'an Modern Chemistry Research Institute, Xi'an 710065, Shaanxi, People's Republic of China, and bSchool of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: 10160454@qq.com, 10160454@qq.com

(Received 1 December 2011; accepted 21 February 2012; online 29 February 2012)

The organic mol­ecule in the title monohydrate, C6N6O5·H2O, presents an almost planar configuration, the greatest deviation from the least-squares plane through the atoms being 0.061 (1) Å for the O atom within the seven-membered ring. Each water H atom is bifurcated, one forming two O—H⋯N hydrogen bonds and the other forming O—H⋯N,O hydrogen bonds. The result of the hydrogen bonding is the formation of supra­molecular layers with a zigzag topology that stack along [001].

Related literature

For background to related energetic materials, see: Sheremetev et al. (2010[Sheremetev, A. B., Aleksandrova, N. S., Suponitsky, K. Y., Antipin, M. Y. & Tartakovsky, V. A. (2010). Mendeleev Commun. 20, 249-252.]); Zhou et al. (2011[Zhou, Y. S., Wang, B. Z., Li, J. K., Zhou, C., Hu, L., Chen, Z. Q. & Zhang, Z. Z. (2011). Acta Chim. Sin. 69, 1673-1680.]); Rozhkov et al. (2004[Rozhkov, V. Y., Batog, L. V., Shevtaova, E. K. & Strchoova, M. I. (2004). Mendeleev Commun. 14(2), 76-77.]); Ovchinnikov et al. (2009[Ovchinnikov, I. V., Lyssenko, K. A. & Makhova, N. N. (2009). Mendeleev Commun. 19, 144-146.]).

[Scheme 1]

Experimental

Crystal data
  • C6N6O5·H2O

  • Mr = 254.14

  • Monoclinic, P 21 /c

  • a = 9.324 (4) Å

  • b = 9.727 (4) Å

  • c = 10.391 (4) Å

  • β = 106.305 (6)°

  • V = 904.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.23 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.975

  • 5058 measured reflections

  • 2146 independent reflections

  • 1808 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.04

  • 2146 reflections

  • 172 parameters

  • All H-atom parameters refined

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1⋯N1i 0.78 (3) 2.52 (3) 3.068 (2) 128 (2)
O6—H1⋯N3ii 0.78 (3) 2.57 (3) 3.234 (2) 144 (3)
O6—H2⋯N5iii 0.90 (3) 2.40 (3) 3.201 (2) 149 (3)
O6—H2⋯O3iii 0.90 (3) 2.46 (3) 3.092 (2) 127 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Furazan-ether compounds are typical energetic materials known for their high energy-density, large heat of formation and low melting point (Sheremetev et al., 2010; Zhou et al., 2011; Rozhkov et al., 2004; Ovchinnikov et al., 2009). We used 3,4-dinitrofurzanfuroxan as a raw material for the synthesis of a new furazan-ether compound, bifurazano[3,4 - b:3',4'-f]furoxano[3'',4''-d]oxacyclohetpatriene, through a special etherifying reaction.

The organic molecule in the title monohydrate, C6N6O5.H2O, Fig. 1, presents an almost planar configuration with the greatest deviation from the least-squares plane through the atoms being 0.061 (1) Å for the O atom in the seven-membered ring.

Related literature top

For background to related energetic materials, see: Sheremetev et al. (2010); Zhou et al. (2011); Rozhkov et al. (2004); Ovchinnikov et al. (2009).

Experimental top

At room temperature, 3,4-dinitrofurzanfuroxan (DNTF) (10.0 g, 0.0321 mol) and anhydrous sodium carbonate (4.6 g, 0.0434 mol) were taken into acetonitrile (25 mL). After reacting at 80 °C for 3.5 h, the resulting solution was transferred into water (80 mL), and then extracted with chloroform (60 mL) three times. The obtained organic phase was dried over anhydrous magnesium sulfate and then filtered. A white solid was obtained, yielding 3.8 g (50.1 %). M.pt. 265–267 K. 13C NMR (500 MHz, DMSO-d6): 160.50, 159.98, 144.39, 137.78, 135.52, 105.03 ppm. IR (KBr, cm-1): 1655, 1562, 1384, 1623, 1543, 1470, 997, 1151. Anal. Calcd for C6N6O5: C 30.51, N 35.59%. Found C 30.87, N 35.99%. Crystals were obtained by slow evaporation of its acetonitrile-water solution.

Refinement top

The water-H atoms were located from a difference map and freely refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.
4,9,12,15-Tetraoxa-3,5,8,10,14,16- hexaazatetracyclo[11.3.0.02,6.07,11]hexadeca- 1(16),2,5,7,10,13-hexaen-3-ium-3-olate monohydrate top
Crystal data top
C6N6O5·H2OF(000) = 512
Mr = 254.14Dx = 1.866 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3631 reflections
a = 9.324 (4) Åθ = 2.9–28.1°
b = 9.727 (4) ŵ = 0.17 mm1
c = 10.391 (4) ÅT = 296 K
β = 106.305 (6)°Block, yellow
V = 904.5 (6) Å30.23 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2146 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 125
Tmin = 0.962, Tmax = 0.975k = 1212
5058 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3369P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2146 reflectionsΔρmax = 0.26 e Å3
172 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C6N6O5·H2OV = 904.5 (6) Å3
Mr = 254.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.324 (4) ŵ = 0.17 mm1
b = 9.727 (4) ÅT = 296 K
c = 10.391 (4) Å0.23 × 0.18 × 0.15 mm
β = 106.305 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2146 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1808 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.975Rint = 0.025
5058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.04Δρmax = 0.26 e Å3
2146 reflectionsΔρmin = 0.18 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26986 (16)1.03267 (15)0.18452 (14)0.0369 (3)
C20.36461 (15)0.95599 (14)0.29024 (14)0.0360 (3)
C30.32627 (16)0.87768 (14)0.39420 (14)0.0357 (3)
C40.18293 (16)0.86773 (13)0.41014 (13)0.0349 (3)
C50.04614 (16)0.92642 (14)0.32715 (14)0.0346 (3)
C60.02700 (15)1.00935 (14)0.21087 (14)0.0347 (3)
N10.34793 (16)1.08919 (16)0.11423 (15)0.0529 (4)
N20.49995 (15)0.96680 (16)0.28215 (14)0.0503 (3)
N30.42478 (15)0.81056 (14)0.48677 (13)0.0466 (3)
N40.19345 (15)0.79332 (13)0.51789 (12)0.0404 (3)
N50.08269 (15)0.91226 (14)0.34987 (14)0.0456 (3)
N60.11096 (15)1.04463 (14)0.16482 (14)0.0456 (3)
O10.49242 (14)1.04823 (15)0.17392 (13)0.0611 (4)
O20.34869 (13)0.75438 (12)0.56793 (11)0.0504 (3)
O30.10766 (14)0.75282 (12)0.57909 (12)0.0529 (3)
O40.18181 (12)0.98452 (13)0.25032 (12)0.0519 (3)
O50.12137 (11)1.05420 (11)0.14306 (10)0.0425 (3)
O60.21407 (18)0.18370 (15)0.41116 (15)0.0614 (4)
H10.290 (3)0.221 (3)0.442 (3)0.096 (10)*
H20.159 (4)0.189 (4)0.470 (3)0.132 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (7)0.0365 (7)0.0359 (7)0.0011 (5)0.0104 (6)0.0001 (5)
C20.0363 (7)0.0351 (7)0.0357 (7)0.0001 (5)0.0086 (5)0.0038 (5)
C30.0391 (7)0.0320 (7)0.0334 (6)0.0018 (5)0.0059 (5)0.0015 (5)
C40.0431 (7)0.0287 (6)0.0315 (6)0.0004 (5)0.0084 (5)0.0004 (5)
C50.0370 (7)0.0305 (6)0.0363 (7)0.0017 (5)0.0102 (5)0.0027 (5)
C60.0352 (7)0.0328 (6)0.0347 (6)0.0009 (5)0.0077 (5)0.0015 (5)
N10.0451 (8)0.0623 (9)0.0529 (8)0.0031 (6)0.0162 (6)0.0134 (7)
N20.0390 (7)0.0614 (9)0.0504 (8)0.0012 (6)0.0123 (6)0.0053 (6)
N30.0463 (7)0.0464 (7)0.0445 (7)0.0033 (6)0.0084 (6)0.0070 (6)
N40.0485 (7)0.0346 (6)0.0381 (6)0.0018 (5)0.0121 (5)0.0014 (5)
N50.0402 (7)0.0492 (7)0.0486 (7)0.0001 (5)0.0143 (6)0.0035 (6)
N60.0388 (7)0.0493 (7)0.0474 (7)0.0047 (5)0.0100 (5)0.0044 (6)
O10.0431 (6)0.0820 (9)0.0614 (8)0.0038 (6)0.0197 (6)0.0184 (7)
O20.0537 (7)0.0486 (6)0.0446 (6)0.0047 (5)0.0067 (5)0.0137 (5)
O30.0644 (8)0.0499 (7)0.0495 (6)0.0045 (5)0.0245 (6)0.0093 (5)
O40.0357 (6)0.0612 (7)0.0592 (7)0.0037 (5)0.0141 (5)0.0052 (6)
O50.0389 (5)0.0492 (6)0.0387 (5)0.0043 (4)0.0101 (4)0.0117 (4)
O60.0607 (8)0.0617 (8)0.0641 (8)0.0195 (7)0.0214 (7)0.0226 (6)
Geometric parameters (Å, º) top
C1—N11.290 (2)C6—N61.2867 (19)
C1—O51.3458 (18)C6—O51.3449 (17)
C1—C21.414 (2)N1—O11.3744 (19)
C2—N21.292 (2)N2—O11.3611 (19)
C2—C31.446 (2)N3—O21.3598 (18)
C3—N31.3034 (19)N4—O31.2186 (17)
C3—C41.395 (2)N4—O21.4444 (18)
C4—N41.3135 (18)N5—O41.3716 (18)
C4—C51.442 (2)N6—O41.3773 (18)
C5—N51.295 (2)O6—H10.78 (3)
C5—C61.422 (2)O6—H20.90 (3)
N1—C1—O5116.47 (13)N6—C6—C5109.95 (13)
N1—C1—C2109.63 (14)O5—C6—C5133.21 (13)
O5—C1—C2133.88 (13)C1—N1—O1104.97 (13)
N2—C2—C1108.37 (13)C2—N2—O1106.04 (13)
N2—C2—C3122.83 (13)C3—N3—O2106.07 (13)
C1—C2—C3128.80 (13)O3—N4—C4136.06 (14)
N3—C3—C4112.18 (13)O3—N4—O2117.75 (12)
N3—C3—C2122.97 (14)C4—N4—O2106.19 (12)
C4—C3—C2124.82 (12)C5—N5—O4105.73 (12)
N4—C4—C3107.14 (12)C6—N6—O4104.91 (12)
N4—C4—C5124.74 (13)N2—O1—N1110.99 (12)
C3—C4—C5128.12 (13)N3—O2—N4108.41 (10)
N5—C5—C6108.29 (13)N5—O4—N6111.13 (11)
N5—C5—C4123.98 (13)C6—O5—C1123.18 (11)
C6—C5—C4127.73 (13)H1—O6—H2108 (3)
N6—C6—O5116.83 (13)
N1—C1—C2—N20.24 (18)C3—C2—N2—O1179.44 (13)
O5—C1—C2—N2177.82 (16)C4—C3—N3—O20.36 (16)
N1—C1—C2—C3179.10 (14)C2—C3—N3—O2177.97 (12)
O5—C1—C2—C32.8 (3)C3—C4—N4—O3179.40 (16)
N2—C2—C3—N30.9 (2)C5—C4—N4—O30.4 (3)
C1—C2—C3—N3179.87 (14)C3—C4—N4—O21.09 (14)
N2—C2—C3—C4177.24 (14)C5—C4—N4—O2179.08 (12)
C1—C2—C3—C42.0 (2)C6—C5—N5—O40.01 (16)
N3—C3—C4—N40.97 (16)C4—C5—N5—O4179.09 (13)
C2—C3—C4—N4177.33 (13)O5—C6—N6—O4179.16 (12)
N3—C3—C4—C5179.21 (14)C5—C6—N6—O40.25 (16)
C2—C3—C4—C52.5 (2)C2—N2—O1—N10.32 (19)
N4—C4—C5—N50.1 (2)C1—N1—O1—N20.46 (19)
C3—C4—C5—N5179.73 (14)C3—N3—O2—N40.33 (15)
N4—C4—C5—C6178.95 (13)O3—N4—O2—N3179.47 (12)
C3—C4—C5—C60.8 (2)C4—N4—O2—N30.92 (15)
N5—C5—C6—N60.16 (17)C5—N5—O4—N60.17 (16)
C4—C5—C6—N6178.88 (13)C6—N6—O4—N50.26 (17)
N5—C5—C6—O5179.12 (15)N6—C6—O5—C1175.58 (13)
C4—C5—C6—O51.8 (3)C5—C6—O5—C15.2 (2)
O5—C1—N1—O1178.03 (13)N1—C1—O5—C6175.61 (14)
C2—C1—N1—O10.41 (18)C2—C1—O5—C66.4 (2)
C1—C2—N2—O10.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···N1i0.78 (3)2.52 (3)3.068 (2)128 (2)
O6—H1···N3ii0.78 (3)2.57 (3)3.234 (2)144 (3)
O6—H2···N5iii0.90 (3)2.40 (3)3.201 (2)149 (3)
O6—H2···O3iii0.90 (3)2.46 (3)3.092 (2)127 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6N6O5·H2O
Mr254.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.324 (4), 9.727 (4), 10.391 (4)
β (°) 106.305 (6)
V3)904.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.962, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5058, 2146, 1808
Rint0.025
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections2146
No. of parameters172
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···N1i0.78 (3)2.52 (3)3.068 (2)128 (2)
O6—H1···N3ii0.78 (3)2.57 (3)3.234 (2)144 (3)
O6—H2···N5iii0.90 (3)2.40 (3)3.201 (2)149 (3)
O6—H2···O3iii0.90 (3)2.46 (3)3.092 (2)127 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

We thank the Basal Science Foundation of National Defense (grant No. B0920110005) for generously supporting this study.

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOvchinnikov, I. V., Lyssenko, K. A. & Makhova, N. N. (2009). Mendeleev Commun. 19, 144–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationRozhkov, V. Y., Batog, L. V., Shevtaova, E. K. & Strchoova, M. I. (2004). Mendeleev Commun. 14(2), 76–77.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheremetev, A. B., Aleksandrova, N. S., Suponitsky, K. Y., Antipin, M. Y. & Tartakovsky, V. A. (2010). Mendeleev Commun. 20, 249–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, Y. S., Wang, B. Z., Li, J. K., Zhou, C., Hu, L., Chen, Z. Q. & Zhang, Z. Z. (2011). Acta Chim. Sin. 69, 1673–1680.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds