organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-3-[(3-Chloro­anilino)(4-chloro­phenyl)meth­yl]thian-4-one

aFachbereich Chemie, Philipps Universität Marburg, Hans Meerwein Str., Marburg D-35032, Germany, and bDepartment of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
*Correspondence e-mail: harms@chemie.uni-marburg.de

(Received 17 January 2012; accepted 3 February 2012; online 10 February 2012)

In the title compound, C18H17Cl2NOS, the thio­pyran­one ring adopts a chair conformation, with the substituent in the axial position. The dihedral angle between the two benzene rings is 89.43 (1)°. In the crystal, mol­ecules form inversion dimers through inter­molecular N—H⋯O hydrogen bonds [graph set R22(8)].

Related literature

For the preparation and spectroscopic characterization of a series of related compounds and the crystal structure of 3-[(phenyl­amino)(p-tol­yl)methly]dihydro-2H-thio­pyran-4(3H)-one, see: Abaee et al. (2012[Abaee, M. S., Motjahedi, M. M., Akbari, A., Mehraki, E., Mesbah, A. W. & Harms, K. (2012). J. Heterocycl. Chem. 49. In the press.]). For the crystal structures of related compounds, see: Guo et al. (2007[Guo, Q.-X., Liu, H., Guo, Ch., Luo, S.-W., Gu, Y. & Gong, L.-Z. (2007). J. Am. Chem. Soc. 129, 3790-3791.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Cryst. E65, o539-o540.]); Harms et al. (2012[Harms, K., Abaee, M. S., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, o749.]). For patterns in hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For defining the relative configuration of diastereomers, see: IUPAC (2012[IUPAC (2012). Compendium of Chemical Terminology - The Gold Book. XML on-line corrected version: http://goldbook.iupac.org (2006-2012) created by M. Nic, J. Jirat & B. Kosata; updates compiled by A. Jenkins.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17Cl2NOS

  • Mr = 366.29

  • Monoclinic, P 21 /c

  • a = 11.2611 (8) Å

  • b = 8.6686 (7) Å

  • c = 18.0976 (12) Å

  • β = 105.266 (8)°

  • V = 1704.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 193 K

  • 0.29 × 0.24 × 0.05 mm

Data collection
  • Stoe IPDS-1 image-plate diffractometer

  • Absorption correction: integration X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.890, Tmax = 0.978

  • 15404 measured reflections

  • 3134 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.048

  • S = 0.64

  • 3134 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1i 0.81 (2) 2.27 (2) 3.070 (2) 168 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: EXPOSE (Stoe & Cie, 1994[Stoe & Cie (1994). EXPOSE and CELL. IPDS User Manual. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 1994[Stoe & Cie (1994). EXPOSE and CELL. IPDS User Manual. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is an example of a product from an anti-selective three-component Mannich reaction involving the thiopyran-4-one system (Abaee et al., 2012). The same anti configuration has been found recently in the crystal structures of two other compounds of this series (Abaee et al., 2012; Harms et al., 2012). In the title compund the thiopyranone ring adopts a chair-like conformation with the substituent in the axial position. The relative configuration of the stereogenic centres at C3 and C7 is R*, S* (IUPAC, 1997). The dihedral angle between the two benzene rings in the molecule is 89.43 (10)°. In the crystal packing the molecules form discrete centrosymmetric dimers are through intermolecular N—H···O hydrogen bonds [graph set R22(8)] (Bernstein et al., 1995). For further details see Table 1 and Fig. 1.

Related literature top

For the preparation and spectroscopic characterization of a series of related compounds and the crystal structure of 3-[(phenylamino)(p-tolyl)methly]dihydro-2H-thiopyran-4(3H)-one , see: Abaee et al. (2012). For the crystal structures of related compounds, see: Guo et al. (2007); Fun et al. (2009); Harms et al. (2012). For patterns in hydrogen bonding, see: Bernstein et al. (1995). For defining the relative configuration of diastereomers, see: IUPAC (1997).

Experimental top

The title compound was synthesized using an anti-selective three-component Mannich reaction involving the thiopyran-4-one system (Abaee et al., 2012). Colourless crystals suitable for the crystal structure determination were grown from ethyl acetate.

Refinement top

All C-bonded H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. The Uiso values were constrained to be 1.2Ueq of the parent C atom. The position of the N-bonded H atom has been refined freely with an isotropic displacement parameter. The N—H bond length is 0.81 (2) Å.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1994); cell refinement: CELL (Stoe & Cie, 1994); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme with displacement ellipsoids drawn at 50% probability level. Dashed lines indicate hydrogen bonds to the neighbouring molecule generated by crystallographic inversion symmetry [for symmetry code (i), see Table 1].
rac-3-[(3-Chloroanilino)(4-chlorophenyl)methyl]thian-4-one top
Crystal data top
C18H17Cl2NOSF(000) = 760
Mr = 366.29Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 11.2611 (8) Åθ = 1.9–25°
b = 8.6686 (7) ŵ = 0.51 mm1
c = 18.0976 (12) ÅT = 193 K
β = 105.266 (8)°Plate, colourless
V = 1704.3 (2) Å30.29 × 0.24 × 0.05 mm
Z = 4
Data collection top
Stoe IPDS-1 image-plate
diffractometer
3134 independent reflections
Radiation source: fine-focus sealed tube1867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 25.4°, θmin = 1.9°
ω scansh = 1313
Absorption correction: integration
X-RED32 (Stoe & Cie, 2006)
k = 1010
Tmin = 0.890, Tmax = 0.978l = 2121
15404 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 0.64 w = 1/[σ2(Fo2) + (0.0127P)2]
where P = (Fo2 + 2Fc2)/3
3134 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H17Cl2NOSV = 1704.3 (2) Å3
Mr = 366.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2611 (8) ŵ = 0.51 mm1
b = 8.6686 (7) ÅT = 193 K
c = 18.0976 (12) Å0.29 × 0.24 × 0.05 mm
β = 105.266 (8)°
Data collection top
Stoe IPDS-1 image-plate
diffractometer
3134 independent reflections
Absorption correction: integration
X-RED32 (Stoe & Cie, 2006)
1867 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.978Rint = 0.042
15404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 0.64Δρmax = 0.17 e Å3
3134 reflectionsΔρmin = 0.15 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.31042 (19)0.2357 (2)0.53806 (11)0.0272 (5)
H2A0.38600.29560.53990.033*
H2B0.27970.19390.48560.033*
C30.21227 (18)0.3451 (2)0.55471 (10)0.0238 (5)
H30.19460.42650.51410.029*
C40.09371 (19)0.2559 (2)0.54853 (11)0.0260 (5)
C50.10024 (19)0.1153 (2)0.59821 (11)0.0282 (5)
H5A0.01840.06530.58640.034*
H5B0.12180.14720.65270.034*
C60.19574 (19)0.0013 (2)0.58604 (12)0.0308 (5)
H6A0.17030.03870.53250.037*
H6B0.19700.09100.62010.037*
C70.25464 (16)0.4273 (2)0.63362 (10)0.0213 (4)
H70.25990.34780.67440.026*
C90.15786 (17)0.6196 (2)0.70276 (11)0.0221 (4)
C100.23976 (18)0.5889 (2)0.77388 (11)0.0251 (4)
H100.30200.51290.77830.030*
C110.2297 (2)0.6703 (2)0.83810 (11)0.0288 (5)
C120.1428 (2)0.7834 (3)0.83454 (13)0.0365 (6)
H120.13730.83740.87920.044*
C130.06325 (19)0.8161 (3)0.76353 (13)0.0353 (5)
H130.00320.89480.75940.042*
C140.07008 (18)0.7357 (2)0.69860 (12)0.0277 (5)
H140.01450.75980.65070.033*
C150.38184 (17)0.4989 (2)0.64544 (10)0.0215 (4)
C160.48456 (17)0.4248 (2)0.69185 (10)0.0240 (4)
H160.47380.33330.71820.029*
C170.60194 (19)0.4826 (2)0.70002 (11)0.0266 (5)
H170.67140.43050.73120.032*
C180.61680 (18)0.6159 (2)0.66259 (10)0.0242 (4)
C190.51657 (18)0.6941 (2)0.61697 (11)0.0278 (5)
H190.52780.78720.59190.033*
C200.39949 (18)0.6339 (2)0.60864 (11)0.0266 (5)
H200.33030.68610.57720.032*
N80.15854 (16)0.5356 (2)0.63804 (10)0.0260 (4)
O10.00210 (14)0.29351 (18)0.50276 (9)0.0404 (4)
S10.34870 (5)0.07723 (6)0.60476 (3)0.02864 (13)
Cl10.33192 (6)0.62648 (7)0.92643 (3)0.04561 (17)
Cl20.76515 (5)0.68900 (7)0.67408 (3)0.03580 (14)
H80.1180 (19)0.569 (2)0.5974 (11)0.027 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0317 (12)0.0281 (12)0.0222 (10)0.0019 (10)0.0076 (9)0.0037 (9)
C30.0298 (11)0.0228 (11)0.0172 (10)0.0003 (9)0.0031 (9)0.0016 (8)
C40.0279 (12)0.0285 (12)0.0185 (10)0.0027 (9)0.0009 (9)0.0070 (9)
C50.0262 (11)0.0277 (12)0.0297 (11)0.0043 (10)0.0058 (9)0.0001 (10)
C60.0331 (12)0.0244 (11)0.0335 (12)0.0026 (10)0.0061 (10)0.0013 (10)
C70.0233 (10)0.0211 (10)0.0184 (9)0.0029 (9)0.0035 (8)0.0015 (9)
C90.0196 (10)0.0201 (11)0.0283 (10)0.0057 (9)0.0095 (9)0.0017 (9)
C100.0255 (11)0.0216 (11)0.0307 (11)0.0034 (9)0.0116 (9)0.0013 (9)
C110.0309 (12)0.0298 (13)0.0284 (11)0.0103 (10)0.0125 (10)0.0022 (10)
C120.0368 (13)0.0357 (14)0.0444 (14)0.0102 (11)0.0239 (11)0.0131 (11)
C130.0263 (12)0.0308 (13)0.0533 (14)0.0015 (11)0.0186 (11)0.0070 (11)
C140.0209 (11)0.0262 (12)0.0369 (12)0.0015 (9)0.0095 (9)0.0000 (10)
C150.0255 (11)0.0220 (10)0.0166 (10)0.0021 (9)0.0045 (8)0.0024 (9)
C160.0281 (11)0.0220 (11)0.0199 (9)0.0000 (10)0.0026 (8)0.0017 (9)
C170.0262 (11)0.0270 (12)0.0243 (10)0.0033 (10)0.0026 (9)0.0021 (9)
C180.0241 (11)0.0244 (11)0.0245 (10)0.0013 (9)0.0072 (8)0.0060 (9)
C190.0314 (12)0.0210 (11)0.0319 (11)0.0001 (10)0.0101 (10)0.0048 (10)
C200.0240 (11)0.0234 (11)0.0312 (11)0.0061 (9)0.0053 (9)0.0052 (10)
N80.0254 (10)0.0282 (11)0.0222 (9)0.0053 (8)0.0025 (8)0.0009 (8)
O10.0317 (8)0.0408 (9)0.0384 (8)0.0017 (8)0.0090 (7)0.0025 (8)
S10.0268 (3)0.0258 (3)0.0316 (3)0.0030 (3)0.0046 (2)0.0003 (2)
Cl10.0576 (4)0.0523 (4)0.0252 (3)0.0036 (3)0.0077 (3)0.0042 (3)
Cl20.0269 (3)0.0373 (3)0.0424 (3)0.0062 (3)0.0076 (2)0.0012 (3)
Geometric parameters (Å, º) top
C2—C31.545 (3)C10—C111.389 (3)
C2—S11.804 (2)C10—H100.9500
C2—H2A0.9900C11—C121.375 (3)
C2—H2B0.9900C11—Cl11.748 (2)
C3—C41.521 (3)C12—C131.388 (3)
C3—C71.555 (2)C12—H120.9500
C3—H31.0000C13—C141.385 (3)
C4—O11.219 (2)C13—H130.9500
C4—C51.505 (3)C14—H140.9500
C5—C61.533 (3)C15—C201.386 (3)
C5—H5A0.9900C15—C161.395 (3)
C5—H5B0.9900C16—C171.385 (3)
C6—S11.799 (2)C16—H160.9500
C6—H6A0.9900C17—C181.372 (3)
C6—H6B0.9900C17—H170.9500
C7—N81.451 (2)C18—C191.388 (3)
C7—C151.524 (3)C18—Cl21.747 (2)
C7—H71.0000C19—C201.389 (3)
C9—N81.381 (2)C19—H190.9500
C9—C101.397 (3)C20—H200.9500
C9—C141.399 (3)N8—H80.81 (2)
C3—C2—S1113.20 (13)C11—C10—H10120.2
C3—C2—H2A108.9C9—C10—H10120.2
S1—C2—H2A108.9C12—C11—C10122.5 (2)
C3—C2—H2B108.9C12—C11—Cl1119.15 (16)
S1—C2—H2B108.9C10—C11—Cl1118.39 (17)
H2A—C2—H2B107.8C11—C12—C13117.82 (19)
C4—C3—C2109.45 (16)C11—C12—H12121.1
C4—C3—C7110.60 (15)C13—C12—H12121.1
C2—C3—C7113.47 (15)C14—C13—C12121.1 (2)
C4—C3—H3107.7C14—C13—H13119.5
C2—C3—H3107.7C12—C13—H13119.5
C7—C3—H3107.7C13—C14—C9120.82 (19)
O1—C4—C5121.19 (19)C13—C14—H14119.6
O1—C4—C3121.12 (19)C9—C14—H14119.6
C5—C4—C3117.63 (17)C20—C15—C16118.50 (18)
C4—C5—C6111.94 (16)C20—C15—C7121.65 (17)
C4—C5—H5A109.2C16—C15—C7119.80 (17)
C6—C5—H5A109.2C17—C16—C15120.98 (19)
C4—C5—H5B109.2C17—C16—H16119.5
C6—C5—H5B109.2C15—C16—H16119.5
H5A—C5—H5B107.9C18—C17—C16119.29 (19)
C5—C6—S1113.37 (15)C18—C17—H17120.4
C5—C6—H6A108.9C16—C17—H17120.4
S1—C6—H6A108.9C17—C18—C19121.32 (19)
C5—C6—H6B108.9C17—C18—Cl2118.95 (16)
S1—C6—H6B108.9C19—C18—Cl2119.73 (16)
H6A—C6—H6B107.7C18—C19—C20118.74 (19)
N8—C7—C15114.59 (17)C18—C19—H19120.6
N8—C7—C3107.13 (14)C20—C19—H19120.6
C15—C7—C3111.44 (14)C15—C20—C19121.15 (19)
N8—C7—H7107.8C15—C20—H20119.4
C15—C7—H7107.8C19—C20—H20119.4
C3—C7—H7107.8C9—N8—C7123.97 (17)
N8—C9—C10122.09 (18)C9—N8—H8116.9 (15)
N8—C9—C14119.70 (18)C7—N8—H8115.6 (14)
C10—C9—C14118.17 (18)C6—S1—C296.53 (10)
C11—C10—C9119.63 (19)
S1—C2—C3—C461.14 (18)C10—C9—C14—C131.2 (3)
S1—C2—C3—C762.93 (19)N8—C7—C15—C2046.3 (2)
C2—C3—C4—O1120.6 (2)C3—C7—C15—C2075.5 (2)
C7—C3—C4—O1113.7 (2)N8—C7—C15—C16136.32 (18)
C2—C3—C4—C556.6 (2)C3—C7—C15—C16101.83 (19)
C7—C3—C4—C569.1 (2)C20—C15—C16—C171.2 (3)
O1—C4—C5—C6121.5 (2)C7—C15—C16—C17176.23 (17)
C3—C4—C5—C655.7 (2)C15—C16—C17—C180.8 (3)
C4—C5—C6—S158.2 (2)C16—C17—C18—C190.3 (3)
C4—C3—C7—N861.7 (2)C16—C17—C18—Cl2179.32 (15)
C2—C3—C7—N8174.84 (16)C17—C18—C19—C200.9 (3)
C4—C3—C7—C15172.20 (16)Cl2—C18—C19—C20180.00 (15)
C2—C3—C7—C1548.8 (2)C16—C15—C20—C190.5 (3)
N8—C9—C10—C11175.75 (18)C7—C15—C20—C19176.88 (18)
C14—C9—C10—C111.9 (3)C18—C19—C20—C150.5 (3)
C9—C10—C11—C121.3 (3)C10—C9—N8—C710.8 (3)
C9—C10—C11—Cl1178.88 (15)C14—C9—N8—C7171.62 (18)
C10—C11—C12—C130.2 (3)C15—C7—N8—C962.2 (2)
Cl1—C11—C12—C13179.69 (16)C3—C7—N8—C9173.59 (17)
C11—C12—C13—C140.9 (3)C5—C6—S1—C256.47 (16)
C12—C13—C14—C90.3 (3)C3—C2—S1—C658.68 (16)
N8—C9—C14—C13176.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.81 (2)2.27 (2)3.070 (2)168 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H17Cl2NOS
Mr366.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)11.2611 (8), 8.6686 (7), 18.0976 (12)
β (°) 105.266 (8)
V3)1704.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.29 × 0.24 × 0.05
Data collection
DiffractometerStoe IPDS1 image-plate
diffractometer
Absorption correctionIntegration
X-RED32 (Stoe & Cie, 2006)
Tmin, Tmax0.890, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15404, 3134, 1867
Rint0.042
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.048, 0.64
No. of reflections3134
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: EXPOSE (Stoe & Cie, 1994), CELL (Stoe & Cie, 1994), X-RED32 (Stoe & Cie, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), publCIF (Westrip, 2010), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.81 (2)2.27 (2)3.070 (2)168 (2)
Symmetry code: (i) x, y+1, z+1.
 

References

First citationAbaee, M. S., Motjahedi, M. M., Akbari, A., Mehraki, E., Mesbah, A. W. & Harms, K. (2012). J. Heterocycl. Chem. 49. In the press.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Cryst. E65, o539–o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Q.-X., Liu, H., Guo, Ch., Luo, S.-W., Gu, Y. & Gong, L.-Z. (2007). J. Am. Chem. Soc. 129, 3790–3791.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarms, K., Abaee, M. S., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, o749.  CSD CrossRef IUCr Journals Google Scholar
First citationIUPAC (2012). Compendium of Chemical Terminology - The Gold Book. XML on-line corrected version: http://goldbook.iupac.org (2006–2012) created by M. Nic, J. Jirat & B. Kosata; updates compiled by A. Jenkins.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1994). EXPOSE and CELL. IPDS User Manual. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2006). X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds