organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1465

(2E)-1-(2,4-Di­chloro­phen­yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 April 2012; accepted 15 April 2012; online 21 April 2012)

In the title compound, C18H16Cl2O4, the dihedral angle between the benzene rings is 82.40 (4)°. The meth­oxy groups at both meta positions of the 3,4,5-trimeth­oxy­phenyl ring are slightly twisted from the aromatic ring [C—O—C—C = −166.60 (8) and −6.18 (13)°], whereas the meth­oxy group at the para position is almost perpendicular [C—O—C—C = 112.08 (9)°]. The ketone O atom is connected to the 2,4-dichloro­phenyl group through a Car—Car—C—O (ar = aromatic) torsion angle of −116.43 (9)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into infinite chains along the b axis. The crystal structure also features C—H⋯π inter­actions.

Related literature

For a related structure, see: Fun et al. (2012[Fun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o629.]). For background to various chalcone derivatives, see: Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharma Chem. 3, 232-240.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16Cl2O4

  • Mr = 367.21

  • Orthorhombic, P b c a

  • a = 9.4305 (5) Å

  • b = 13.9334 (8) Å

  • c = 25.6417 (14) Å

  • V = 3369.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.48 × 0.39 × 0.22 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.917

  • 24763 measured reflections

  • 6139 independent reflections

  • 5445 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.086

  • S = 1.03

  • 6139 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10—C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O3i 0.93 2.53 3.3442 (11) 147
C17—H17ACg1ii 0.96 2.60 3.2965 (11) 130
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the synthesis of chalcones (Fun et al., 2012, Samshuddin et al., 2011) as potential precursors for biodynamic functionalized derivatives, the title compound was prepared and its crystal structure is now reported.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings (C1–C6 & C10–C15) is 82.40 (4)°. The two methoxy groups at both meta positions (at atoms C12 & C14) are slightly twisted from the attached benzene ring with torsion angles C16—O1—C12—C13 = -166.60 (8)° and C18—O3—C14—C15 = -6.18 (13)°, whereas the methoxy group at para position (at atom C13) is almost perpendicular with C17—O2—C13—C14 = 112.08 (9)°. The atom O4 is connected to 2,4-dichlorophenyl group (Cl1/Cl2/C1–C6) through torsion angle [C5—C6—C7—O4] of -116.43 (9)°. Bond lengths and angles are comparable to a related structure (Fun et al., 2012).

In the crystal (Fig. 2), molecules are linked by C9—H9A—O3 hydrogen bonds into infinite chains along the b axis. The crystal is further stabilized by C—H···π interactions (Table 1), involving Cg1 which is the centroid of C10—C15 ring.

Related literature top

For a related structure, see: Fun et al. (2012). For background to various chalcone derivatives, see: Samshuddin et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 2,4-dichloroacetophenone (1.89 g, 0.01 mol) and 3,4,5-trimethoxybenzaldehyde (1.96 g, 0.01 mol) in ethanol (50 ml), 15 ml of 10% sodium hydroxide solution was added and stirred at 0–5 °C for 1 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Colourless blocks were grown from toluene as solvent by slow evaporation method (M.P.: 335–337 K).

Refinement top

All H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. An outlier (0 0 18) was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
(2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H16Cl2O4F(000) = 1520
Mr = 367.21Dx = 1.448 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9912 reflections
a = 9.4305 (5) Åθ = 2.7–32.7°
b = 13.9334 (8) ŵ = 0.40 mm1
c = 25.6417 (14) ÅT = 100 K
V = 3369.3 (3) Å3Block, colourless
Z = 80.48 × 0.39 × 0.22 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
6139 independent reflections
Radiation source: fine-focus sealed tube5445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 32.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1214
Tmin = 0.829, Tmax = 0.917k = 2021
24763 measured reflectionsl = 3835
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.108P]
where P = (Fo2 + 2Fc2)/3
6139 reflections(Δ/σ)max = 0.002
220 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H16Cl2O4V = 3369.3 (3) Å3
Mr = 367.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4305 (5) ŵ = 0.40 mm1
b = 13.9334 (8) ÅT = 100 K
c = 25.6417 (14) Å0.48 × 0.39 × 0.22 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
6139 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5445 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.917Rint = 0.020
24763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
6139 reflectionsΔρmin = 0.22 e Å3
220 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28135 (3)0.217251 (16)0.611803 (9)0.02108 (6)
Cl20.68551 (3)0.053651 (17)0.730224 (9)0.02548 (6)
O10.85362 (8)0.59918 (5)0.48151 (3)0.02017 (13)
O20.81150 (7)0.78269 (5)0.51372 (3)0.01807 (13)
O30.67985 (7)0.82227 (5)0.60144 (3)0.01813 (13)
O40.22886 (7)0.40914 (5)0.67797 (3)0.01916 (13)
C10.41001 (9)0.22749 (6)0.65990 (3)0.01458 (14)
C20.48428 (10)0.14561 (6)0.67434 (3)0.01770 (15)
H2A0.46380.08650.65930.021*
C30.58992 (10)0.15424 (6)0.71183 (3)0.01775 (16)
C40.62109 (11)0.24156 (7)0.73518 (4)0.02006 (17)
H4A0.69070.24580.76080.024*
C50.54655 (10)0.32244 (6)0.71967 (3)0.01803 (16)
H5A0.56800.38150.73460.022*
C60.43967 (9)0.31692 (6)0.68200 (3)0.01377 (14)
C70.35648 (9)0.40595 (6)0.66920 (3)0.01436 (14)
C80.43334 (9)0.48838 (6)0.64771 (3)0.01531 (14)
H8A0.39170.54880.64980.018*
C90.56145 (9)0.48055 (6)0.62511 (3)0.01455 (14)
H9A0.60550.42080.62590.017*
C100.63649 (9)0.55929 (6)0.59932 (3)0.01371 (14)
C110.72028 (9)0.53747 (6)0.55583 (3)0.01506 (14)
H11A0.73550.47390.54620.018*
C120.78076 (9)0.61202 (6)0.52700 (3)0.01442 (14)
C130.76521 (9)0.70727 (6)0.54348 (3)0.01393 (14)
C140.68727 (9)0.72740 (6)0.58881 (3)0.01376 (14)
C150.62042 (9)0.65414 (6)0.61624 (3)0.01450 (14)
H15A0.56570.66800.64550.017*
C160.84445 (12)0.50620 (8)0.45782 (4)0.02523 (19)
H16A0.89120.50740.42460.038*
H16B0.74660.48930.45310.038*
H16C0.88940.45970.47990.038*
C170.96130 (10)0.79619 (7)0.51322 (4)0.02343 (18)
H17A0.98490.84750.48980.035*
H17B1.00660.73820.50180.035*
H17C0.99330.81190.54770.035*
C180.58610 (11)0.84829 (7)0.64272 (4)0.0248 (2)
H18A0.58530.91680.64650.037*
H18B0.61780.81940.67460.037*
H18C0.49210.82620.63480.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02216 (11)0.01837 (10)0.02271 (10)0.00144 (8)0.00764 (8)0.00429 (7)
Cl20.03293 (13)0.02033 (11)0.02319 (11)0.00754 (9)0.00281 (9)0.00501 (8)
O10.0237 (3)0.0184 (3)0.0184 (3)0.0001 (3)0.0076 (2)0.0007 (2)
O20.0143 (3)0.0170 (3)0.0229 (3)0.0021 (2)0.0016 (2)0.0081 (2)
O30.0185 (3)0.0108 (3)0.0251 (3)0.0023 (2)0.0047 (2)0.0020 (2)
O40.0144 (3)0.0186 (3)0.0245 (3)0.0026 (2)0.0027 (2)0.0016 (2)
C10.0158 (3)0.0142 (3)0.0137 (3)0.0028 (3)0.0004 (3)0.0005 (3)
C20.0225 (4)0.0133 (3)0.0173 (3)0.0006 (3)0.0001 (3)0.0006 (3)
C30.0217 (4)0.0151 (3)0.0164 (3)0.0015 (3)0.0003 (3)0.0035 (3)
C40.0227 (4)0.0185 (4)0.0190 (4)0.0014 (3)0.0058 (3)0.0018 (3)
C50.0210 (4)0.0147 (3)0.0184 (4)0.0036 (3)0.0036 (3)0.0000 (3)
C60.0148 (3)0.0122 (3)0.0143 (3)0.0027 (3)0.0010 (3)0.0011 (2)
C70.0153 (3)0.0132 (3)0.0146 (3)0.0027 (3)0.0003 (3)0.0011 (3)
C80.0148 (3)0.0118 (3)0.0193 (4)0.0006 (3)0.0017 (3)0.0018 (3)
C90.0148 (3)0.0122 (3)0.0167 (3)0.0004 (3)0.0006 (3)0.0019 (3)
C100.0127 (3)0.0117 (3)0.0168 (3)0.0002 (3)0.0008 (3)0.0024 (3)
C110.0144 (3)0.0128 (3)0.0180 (3)0.0016 (3)0.0017 (3)0.0017 (3)
C120.0130 (3)0.0151 (3)0.0152 (3)0.0013 (3)0.0017 (3)0.0017 (3)
C130.0117 (3)0.0133 (3)0.0168 (3)0.0003 (3)0.0006 (3)0.0035 (3)
C140.0120 (3)0.0111 (3)0.0182 (3)0.0006 (3)0.0002 (3)0.0003 (3)
C150.0138 (3)0.0127 (3)0.0170 (3)0.0009 (3)0.0023 (3)0.0006 (3)
C160.0312 (5)0.0230 (4)0.0216 (4)0.0004 (4)0.0065 (4)0.0058 (3)
C170.0156 (4)0.0213 (4)0.0334 (5)0.0034 (3)0.0058 (3)0.0033 (4)
C180.0246 (5)0.0164 (4)0.0334 (5)0.0007 (3)0.0092 (4)0.0067 (3)
Geometric parameters (Å, º) top
Cl1—C11.7360 (9)C8—H8A0.9300
Cl2—C31.7319 (9)C9—C101.4635 (11)
O1—C121.3655 (10)C9—H9A0.9300
O1—C161.4334 (12)C10—C151.3992 (11)
O2—C131.3702 (10)C10—C111.4000 (12)
O2—C171.4252 (11)C11—C121.3967 (12)
O3—C141.3628 (10)C11—H11A0.9300
O3—C181.4260 (12)C12—C131.4005 (12)
O4—C71.2252 (11)C13—C141.4034 (12)
C1—C21.3890 (12)C14—C151.3909 (11)
C1—C61.3971 (11)C15—H15A0.9300
C2—C31.3896 (13)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.3874 (13)C16—H16C0.9600
C4—C51.3864 (13)C17—H17A0.9600
C4—H4A0.9300C17—H17B0.9600
C5—C61.3983 (12)C17—H17C0.9600
C5—H5A0.9300C18—H18A0.9600
C6—C71.5040 (12)C18—H18B0.9600
C7—C81.4658 (12)C18—H18C0.9600
C8—C91.3444 (12)
C12—O1—C16116.75 (7)C12—C11—C10119.38 (8)
C13—O2—C17114.96 (7)C12—C11—H11A120.3
C14—O3—C18117.06 (7)C10—C11—H11A120.3
C2—C1—C6121.57 (8)O1—C12—C11124.07 (8)
C2—C1—Cl1118.31 (6)O1—C12—C13115.76 (7)
C6—C1—Cl1120.09 (6)C11—C12—C13120.15 (8)
C1—C2—C3118.35 (8)O2—C13—C12121.69 (8)
C1—C2—H2A120.8O2—C13—C14118.34 (7)
C3—C2—H2A120.8C12—C13—C14119.62 (7)
C4—C3—C2121.75 (8)O3—C14—C15124.64 (8)
C4—C3—Cl2118.81 (7)O3—C14—C13114.69 (7)
C2—C3—Cl2119.44 (7)C15—C14—C13120.63 (8)
C5—C4—C3118.79 (8)C14—C15—C10119.16 (8)
C5—C4—H4A120.6C14—C15—H15A120.4
C3—C4—H4A120.6C10—C15—H15A120.4
C4—C5—C6121.26 (8)O1—C16—H16A109.5
C4—C5—H5A119.4O1—C16—H16B109.5
C6—C5—H5A119.4H16A—C16—H16B109.5
C1—C6—C5118.26 (8)O1—C16—H16C109.5
C1—C6—C7122.87 (7)H16A—C16—H16C109.5
C5—C6—C7118.78 (7)H16B—C16—H16C109.5
O4—C7—C8121.76 (8)O2—C17—H17A109.5
O4—C7—C6120.16 (8)O2—C17—H17B109.5
C8—C7—C6118.06 (7)H17A—C17—H17B109.5
C9—C8—C7122.88 (8)O2—C17—H17C109.5
C9—C8—H8A118.6H17A—C17—H17C109.5
C7—C8—H8A118.6H17B—C17—H17C109.5
C8—C9—C10124.64 (8)O3—C18—H18A109.5
C8—C9—H9A117.7O3—C18—H18B109.5
C10—C9—H9A117.7H18A—C18—H18B109.5
C15—C10—C11120.88 (7)O3—C18—H18C109.5
C15—C10—C9121.04 (7)H18A—C18—H18C109.5
C11—C10—C9118.03 (7)H18B—C18—H18C109.5
C6—C1—C2—C30.19 (13)C15—C10—C11—C124.30 (13)
Cl1—C1—C2—C3178.29 (7)C9—C10—C11—C12173.10 (8)
C1—C2—C3—C40.71 (14)C16—O1—C12—C1111.64 (13)
C1—C2—C3—Cl2179.40 (7)C16—O1—C12—C13166.60 (8)
C2—C3—C4—C51.43 (14)C10—C11—C12—O1174.04 (8)
Cl2—C3—C4—C5178.69 (7)C10—C11—C12—C134.13 (13)
C3—C4—C5—C61.26 (14)C17—O2—C13—C1274.72 (11)
C2—C1—C6—C50.34 (13)C17—O2—C13—C14112.08 (9)
Cl1—C1—C6—C5178.41 (7)O1—C12—C13—O24.53 (12)
C2—C1—C6—C7176.86 (8)C11—C12—C13—O2173.79 (8)
Cl1—C1—C6—C75.07 (11)O1—C12—C13—C14177.64 (8)
C4—C5—C6—C10.39 (13)C11—C12—C13—C140.67 (13)
C4—C5—C6—C7176.27 (8)C18—O3—C14—C156.18 (13)
C1—C6—C7—O460.07 (12)C18—O3—C14—C13171.48 (8)
C5—C6—C7—O4116.43 (9)O2—C13—C14—O37.14 (11)
C1—C6—C7—C8121.77 (9)C12—C13—C14—O3179.52 (8)
C5—C6—C7—C861.73 (11)O2—C13—C14—C15170.62 (8)
O4—C7—C8—C9162.01 (9)C12—C13—C14—C152.72 (13)
C6—C7—C8—C919.86 (12)O3—C14—C15—C10179.90 (8)
C7—C8—C9—C10174.62 (8)C13—C14—C15—C102.57 (13)
C8—C9—C10—C1531.54 (13)C11—C10—C15—C140.95 (13)
C8—C9—C10—C11145.86 (9)C9—C10—C15—C14176.36 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10—C15 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.932.533.3442 (11)147
C17—H17A···Cg1ii0.962.603.2965 (11)130
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x, y+3/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H16Cl2O4
Mr367.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.4305 (5), 13.9334 (8), 25.6417 (14)
V3)3369.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.48 × 0.39 × 0.22
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.829, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
24763, 6139, 5445
Rint0.020
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.03
No. of reflections6139
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10—C15 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.932.533.3442 (11)147
C17—H17A···Cg1ii0.962.603.2965 (11)130
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x, y+3/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. BN thanks the UGC, New Delhi, Government of India, for the purchase of chemicals through the SAP–DRS–Phase 1 programme.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o629.  CSD CrossRef IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharma Chem. 3, 232–240.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds