metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m697-m698

Poly[[di­aqua­bis­­(μ3-3,5-dicarb­­oxy­benzo­ato-κ3O1:O3:O5)bis­­(μ3-5-carb­­oxy­ben­zene-1,3-di­carboxyl­ato-κ3O1:O3:O5)tetra­kis­(methylformamide-κO)tri­man­ganese(II)] di­methyl­formamide tetra­solvate]

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: 13623712409@139.com

(Received 10 April 2012; accepted 20 April 2012; online 28 April 2012)

In the title complex, {[Mn3(C9H4O6)2(C9H5O6)2(C3H7NO)4(H2O)2]·4C3H7NO}n, one MnII ion sits on an inversion center, and is six-coordinated by four O atoms from four anions (monoanionic and dianionic) derived from benzene-1,3,5-tricarboxylic acid and by two dimethyl­formamide (DMF) mol­ecules in a slightly distorted octa­hedral geometry. The other MnII ion is six-coordinated by four O atoms from four monoanionic and dianionic ligands, one DMF mol­ecule and one water mol­ecule in a distorted octa­hedral geometry. The monoanionic and dianionic ligands bridge the MnII ions, resulting in the formation of a layered structure parallel to (111) in which all of the carboxyl­ate groups of the anionic ligands coordinate the MnII ions in a monodentate manner. Intra- and inter­molecular O—H⋯O hydrogen bonds are present in the structure.

Related literature

For background information on complexes based on aromatic polycarboxyl­ate ligands see: Hu et al. (2011[Hu, J.-S., Huang, L.-F., Yao, X.-Q., Qin, L., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2011). Inorg. Chem. 50, 2404-2414.]); Prajapati et al. (2009[Prajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600-608.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn3(C9H4O6)2(C9H5O6)2(C3H7NO)4(H2O)2]·4C3H7NO

  • Mr = 1620.12

  • Triclinic, [P \overline 1]

  • a = 9.826 (2) Å

  • b = 13.290 (3) Å

  • c = 14.698 (3) Å

  • α = 73.22 (3)°

  • β = 83.32 (3)°

  • γ = 89.79 (3)°

  • V = 1824.2 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.13 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.894, Tmax = 0.925

  • 18985 measured reflections

  • 6589 independent reflections

  • 5527 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.116

  • S = 1.13

  • 6589 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O2 0.82 1.67 2.448 (3) 157
O17—H2W⋯O16 0.85 1.85 2.694 (4) 176
O6—H6⋯O9i 0.82 1.69 2.452 (3) 153
O3—H3⋯O11ii 0.82 1.69 2.463 (3) 157
O17—H1W⋯O15iii 0.85 1.92 2.713 (4) 155
Symmetry codes: (i) x, y-1, z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Aromatic polycarboxylate compounds, such as 1,3,5-benzenetricarboxylic acid and 1,2,4,5-benzenetetracarboxylic acid, have been proved to be effective ligands to design and synthesize open and rigid frameworks due to the versatile binding modes and high binding capacity of the carboxylate groups (Hu et al., 2011; Prajapati et al., 2009). In order to further explore metal-organic frameworks with new structures, we selected 1,3,5-benzenetricarboxylic acid (H3btc) as ligand to self-assembly with MnCl2 and obtained the title complex, {[Mn3(C9H4O6)2(C9H5O6)2(DMF)4)(H2O)2](DMF)4}n, of which the crystal structure is reported herein. As shown in Figure 1, there are two crystallographically independent manganese ions (Mn1 and Mn2), two crystallographically independent 1,3,5-benzenetricarboxylte groups (Hbtc and H2btc), two crystallographically independent coordination DMF molecules, one coordination H2O molecule, two crystallographically independent uncoordination DMF molecules in an asymmetric unit. Each Mn1 ion lies on an inversion center and displays a slightly distorted octahedral geometry defined by atoms O1, O1A, O7, O7A from four 1,3,5-benzenetricarboxylte anions in equatorial positions and by atoms O13, O13A from two DMF molecules in axial positions. The Mn2 ion is bound with six oxygen atoms from four 1,3,5-benzenetricarboxylte groups (O4A, O5B, O10, O12C), one DMF molecule (O14) and one H2O molecule (O17) leading to a distorted octahedral geometry. As depicted in Figure 2, Mn1 and Mn2 ions are bridged by 1,3,5-benzenetricarboxylte ligands forming the two-dimensional layer structure in which all of the carboxylate groups of the 1,3,5-benzenetricarboxylte ligands coordinate to MnII ions in monodentate mode. In addition, intramolecular O—H···O hydrogen bonds between the carboxyl/carboxylate groups stabilize the molecular configuration whereas O—H···O hydrogen bonds between coordinated water molecules and solvent DMF molecules and between carboxyl/carboxylate groups of adjacent molecules consolidate the crystal packing.

Related literature top

For background information on complexes based on aromatic polycarboxylate ligands see: Hu et al. (2011); Prajapati et al. (2009).

Experimental top

A mixture of MnCl2 (0.1 mmol), 1,3,5-benzenetricarboxylic acid (0.1 mmol), N,N'-dimethylformamide (2 ml) and water (8 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 100 °C for 72 h, then cooled to room temperature. Pale yellow crystals were obtained from the filtrate and dried in air.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic, CHO) Å and 0.96 (CH3) Å. H atoms bound to O atoms were found in difference maps. Hydroxyl hydrogens were included using a riding model with distance restraints of O-H = 0.82 Å. Water hydrogens were included with O-H = 0.85 Å. All H atoms were assigned Uiso(H) = 1.2 Ueq(C,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title complex showing 30% probability displacement ellipsoids. [Symmetry code A: -x + 2, -y, -z + 2; B: x, y + 1, z - 1; C: -x + 1, -y + 1, -z + 2.]
[Figure 2] Fig. 2. View of the two-dimensional structure of the title complex. Hydrogen atoms are omitted for clarity.
Poly[[diaquabis(µ3-3,5- dicarboxybenzoato-κ3O1:O3:O5)bis(µ3-5- carboxybenzene-1,3-dicarboxylato- κ3O1:O3:O5)tetrakis(methylformamide- κO)trimanganese(II)] dimethylformamide tetrasolvate] top
Crystal data top
[Mn3(C9H4O6)2(C9H5O6)2(C3H7NO)4(H2O)2]·4C3H7NOZ = 1
Mr = 1620.12F(000) = 841
Triclinic, P1Dx = 1.475 Mg m3
a = 9.826 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.290 (3) ÅCell parameters from 4578 reflections
c = 14.698 (3) Åθ = 2.1–27.9°
α = 73.22 (3)°µ = 0.61 mm1
β = 83.32 (3)°T = 293 K
γ = 89.79 (3)°Prism, pale yellow
V = 1824.2 (6) Å30.19 × 0.15 × 0.13 mm
Data collection top
Rigaku Saturn CCD
diffractometer
6589 independent reflections
Radiation source: fine-focus sealed tube5527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 28.6 pixels mm-1θmax = 25.3°, θmin = 1.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 1515
Tmin = 0.894, Tmax = 0.925l = 1717
18985 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.4521P]
where P = (Fo2 + 2Fc2)/3
6589 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn3(C9H4O6)2(C9H5O6)2(C3H7NO)4(H2O)2]·4C3H7NOγ = 89.79 (3)°
Mr = 1620.12V = 1824.2 (6) Å3
Triclinic, P1Z = 1
a = 9.826 (2) ÅMo Kα radiation
b = 13.290 (3) ŵ = 0.61 mm1
c = 14.698 (3) ÅT = 293 K
α = 73.22 (3)°0.19 × 0.15 × 0.13 mm
β = 83.32 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
6589 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
5527 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.925Rint = 0.041
18985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.13Δρmax = 0.33 e Å3
6589 reflectionsΔρmin = 0.33 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.00001.00000.02695 (18)
Mn20.64081 (5)0.63958 (4)0.66415 (3)0.02946 (15)
O11.0590 (2)0.06181 (19)1.14191 (14)0.0397 (6)
O20.8883 (3)0.04824 (19)1.25050 (16)0.0455 (7)
O31.3739 (2)0.35363 (17)1.21994 (15)0.0367 (6)
H31.42780.39591.20670.044*
O41.3256 (2)0.48344 (17)1.35625 (15)0.0347 (6)
O50.8257 (2)0.31041 (18)1.56693 (15)0.0368 (6)
O60.9930 (2)0.42307 (18)1.60883 (14)0.0366 (6)
H60.94360.44151.66010.044*
O70.9379 (2)0.14743 (17)1.02342 (16)0.0399 (6)
O80.7940 (3)0.11542 (18)1.15860 (16)0.0433 (6)
H80.84050.06351.17600.052*
O90.9107 (2)0.49197 (19)0.77771 (15)0.0404 (6)
O100.7326 (2)0.59048 (17)0.79841 (14)0.0352 (6)
O110.5417 (2)0.55479 (17)1.13690 (15)0.0361 (6)
O120.5501 (2)0.39777 (18)1.24445 (15)0.0371 (6)
O130.7895 (3)0.0676 (2)1.03997 (18)0.0452 (6)
O140.6417 (3)0.8009 (2)0.67832 (19)0.0494 (7)
O150.7270 (3)0.2236 (3)0.4303 (3)0.0780 (10)
O160.5669 (4)0.7479 (2)0.3566 (2)0.0724 (10)
O170.5163 (3)0.6835 (2)0.54908 (16)0.0487 (7)
H1W0.43090.69350.55780.058*
H2W0.53560.70170.48860.058*
N10.6125 (4)0.1482 (3)0.9988 (3)0.0671 (11)
N20.5441 (4)0.9589 (3)0.6541 (3)0.0635 (11)
N30.9217 (3)0.1958 (3)0.3439 (3)0.0556 (9)
N40.7209 (3)0.6531 (3)0.2913 (2)0.0518 (9)
C10.9950 (3)0.0916 (2)1.2233 (2)0.0286 (7)
C21.3077 (3)0.3950 (2)1.3036 (2)0.0280 (7)
C30.9364 (3)0.3492 (2)1.5497 (2)0.0278 (7)
C41.0434 (3)0.1846 (2)1.2955 (2)0.0248 (7)
C51.1553 (3)0.2386 (2)1.2693 (2)0.0251 (7)
H5A1.20240.21421.20810.030*
C61.1979 (3)0.3284 (2)1.3335 (2)0.0249 (7)
C71.1277 (3)0.3631 (2)1.4253 (2)0.0267 (7)
H7A1.15630.42251.46920.032*
C81.0154 (3)0.3099 (2)1.4523 (2)0.0248 (7)
C90.9725 (3)0.2219 (2)1.3868 (2)0.0256 (7)
H9A0.89560.18741.40390.031*
C100.8490 (3)0.1743 (2)1.0777 (2)0.0277 (7)
C110.8095 (3)0.5173 (2)0.8280 (2)0.0294 (7)
C120.5792 (3)0.4611 (2)1.1633 (2)0.0273 (7)
C130.7994 (3)0.2843 (2)1.0503 (2)0.0255 (7)
C140.8347 (3)0.3501 (2)0.9576 (2)0.0263 (7)
H14A0.89270.32670.91390.032*
C150.7838 (3)0.4499 (2)0.9307 (2)0.0261 (7)
C160.7011 (3)0.4862 (2)0.9972 (2)0.0274 (7)
H16A0.66710.55350.97890.033*
C170.6688 (3)0.4234 (2)1.0903 (2)0.0241 (7)
C180.7168 (3)0.3212 (2)1.1157 (2)0.0249 (7)
H18A0.69300.27741.17740.030*
C190.7395 (4)0.1154 (3)0.9906 (3)0.0559 (11)
H19A0.79900.12960.94210.067*
C200.5644 (6)0.2077 (5)0.9397 (5)0.116 (2)
H20A0.63880.21590.89420.139*
H20B0.49230.17100.90640.139*
H20C0.53030.27570.97940.139*
C210.5122 (5)0.1282 (4)1.0712 (4)0.098 (2)
H21A0.55500.08881.10610.117*
H21B0.47590.19391.11440.117*
H21C0.43920.08881.04120.117*
C220.5480 (4)0.8594 (3)0.6588 (3)0.0552 (11)
H220.46950.83010.64560.066*
C230.6581 (6)1.0127 (4)0.6741 (5)0.114 (2)
H23A0.73060.96460.69030.137*
H23B0.62981.04020.72670.137*
H23C0.69031.06950.61850.137*
C240.4228 (6)1.0195 (5)0.6292 (5)0.127 (3)
H24A0.35390.97500.61800.153*
H24B0.44681.07680.57240.153*
H24C0.38791.04670.68090.153*
C250.8121 (5)0.2499 (4)0.3601 (4)0.0607 (12)
H25A0.79950.31290.31420.073*
C261.0185 (5)0.2309 (4)0.2581 (3)0.0760 (14)
H26A0.98830.29510.21710.091*
H26B1.02410.17800.22510.091*
H26C1.10710.24270.27520.091*
C270.9503 (5)0.0999 (4)0.4130 (4)0.0749 (14)
H27A0.87970.08470.46640.090*
H27B1.03720.10730.43460.090*
H27C0.95330.04350.38420.090*
C280.6549 (5)0.7381 (3)0.2937 (3)0.0561 (11)
H280.67720.79760.24210.067*
C290.8230 (5)0.6526 (4)0.2122 (4)0.0839 (17)
H29A0.83110.72120.16660.101*
H29B0.79590.60200.18190.101*
H29C0.90970.63420.23550.101*
C300.6934 (5)0.5587 (4)0.3695 (4)0.0809 (16)
H30A0.62370.57130.41610.097*
H30B0.77570.53830.39860.097*
H30C0.66250.50340.34610.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0340 (4)0.0230 (4)0.0199 (3)0.0078 (3)0.0035 (3)0.0028 (3)
Mn20.0318 (3)0.0259 (3)0.0237 (3)0.0107 (2)0.0054 (2)0.0004 (2)
O10.0471 (14)0.0431 (14)0.0181 (11)0.0165 (12)0.0016 (10)0.0054 (10)
O20.0545 (16)0.0367 (14)0.0310 (13)0.0262 (12)0.0112 (12)0.0059 (11)
O30.0433 (14)0.0298 (13)0.0285 (12)0.0131 (11)0.0158 (11)0.0034 (10)
O40.0436 (14)0.0260 (12)0.0286 (12)0.0148 (11)0.0033 (10)0.0020 (10)
O50.0352 (13)0.0341 (13)0.0299 (12)0.0105 (11)0.0121 (10)0.0019 (10)
O60.0400 (14)0.0389 (14)0.0187 (11)0.0138 (11)0.0079 (10)0.0062 (10)
O70.0531 (15)0.0250 (13)0.0356 (13)0.0154 (11)0.0092 (12)0.0051 (10)
O80.0528 (16)0.0280 (13)0.0353 (13)0.0196 (12)0.0081 (12)0.0069 (11)
O90.0427 (14)0.0458 (15)0.0214 (11)0.0187 (12)0.0107 (10)0.0024 (11)
O100.0445 (14)0.0304 (13)0.0230 (12)0.0138 (11)0.0003 (10)0.0028 (10)
O110.0420 (14)0.0272 (13)0.0334 (13)0.0096 (11)0.0120 (11)0.0061 (10)
O120.0383 (13)0.0415 (14)0.0226 (12)0.0127 (11)0.0104 (10)0.0009 (11)
O130.0425 (15)0.0472 (16)0.0432 (15)0.0054 (12)0.0042 (12)0.0125 (13)
O140.0489 (16)0.0382 (15)0.0610 (17)0.0145 (13)0.0058 (13)0.0146 (13)
O150.059 (2)0.100 (3)0.083 (2)0.029 (2)0.0168 (19)0.037 (2)
O160.106 (3)0.063 (2)0.0425 (16)0.0293 (19)0.0030 (17)0.0113 (15)
O170.0462 (15)0.0636 (18)0.0297 (13)0.0191 (13)0.0018 (11)0.0045 (12)
N10.048 (2)0.051 (2)0.091 (3)0.0097 (18)0.018 (2)0.001 (2)
N20.063 (2)0.0298 (18)0.093 (3)0.0087 (17)0.012 (2)0.0193 (19)
N30.050 (2)0.059 (2)0.061 (2)0.0103 (18)0.0139 (18)0.0199 (19)
N40.050 (2)0.049 (2)0.062 (2)0.0134 (17)0.0142 (17)0.0202 (18)
C10.0355 (18)0.0255 (17)0.0224 (16)0.0061 (14)0.0014 (14)0.0039 (14)
C20.0293 (17)0.0297 (18)0.0245 (16)0.0071 (14)0.0000 (14)0.0083 (14)
C30.0346 (18)0.0228 (16)0.0219 (16)0.0029 (14)0.0041 (14)0.0032 (13)
C40.0301 (16)0.0206 (16)0.0205 (15)0.0041 (13)0.0000 (13)0.0020 (13)
C50.0311 (17)0.0238 (16)0.0178 (15)0.0033 (13)0.0024 (13)0.0042 (13)
C60.0261 (16)0.0250 (16)0.0213 (15)0.0053 (13)0.0038 (13)0.0059 (13)
C70.0312 (17)0.0241 (16)0.0206 (15)0.0079 (14)0.0011 (13)0.0006 (13)
C80.0284 (16)0.0267 (17)0.0170 (15)0.0047 (13)0.0026 (13)0.0048 (13)
C90.0295 (17)0.0245 (16)0.0211 (15)0.0082 (13)0.0005 (13)0.0055 (13)
C100.0335 (18)0.0233 (17)0.0232 (16)0.0077 (14)0.0033 (14)0.0021 (14)
C110.0358 (18)0.0261 (17)0.0216 (16)0.0066 (15)0.0011 (14)0.0013 (14)
C120.0258 (16)0.0291 (18)0.0240 (16)0.0019 (14)0.0036 (13)0.0058 (14)
C130.0294 (17)0.0233 (16)0.0221 (16)0.0086 (13)0.0040 (13)0.0035 (13)
C140.0300 (17)0.0287 (17)0.0184 (15)0.0101 (14)0.0037 (13)0.0065 (13)
C150.0305 (17)0.0259 (17)0.0181 (15)0.0093 (14)0.0003 (13)0.0012 (13)
C160.0304 (17)0.0215 (16)0.0258 (16)0.0078 (13)0.0006 (14)0.0011 (13)
C170.0251 (16)0.0260 (16)0.0190 (15)0.0056 (13)0.0015 (13)0.0050 (13)
C180.0296 (16)0.0229 (16)0.0177 (15)0.0032 (13)0.0022 (13)0.0009 (13)
C190.053 (3)0.045 (2)0.062 (3)0.003 (2)0.005 (2)0.005 (2)
C200.111 (5)0.082 (4)0.162 (6)0.023 (4)0.067 (5)0.027 (4)
C210.057 (3)0.081 (4)0.114 (5)0.011 (3)0.006 (3)0.030 (3)
C220.050 (2)0.043 (2)0.075 (3)0.008 (2)0.003 (2)0.022 (2)
C230.108 (5)0.063 (4)0.181 (7)0.008 (3)0.005 (5)0.055 (4)
C240.102 (5)0.064 (4)0.218 (8)0.044 (4)0.017 (5)0.045 (5)
C250.057 (3)0.058 (3)0.077 (3)0.016 (2)0.036 (3)0.025 (3)
C260.059 (3)0.086 (4)0.082 (4)0.011 (3)0.011 (3)0.022 (3)
C270.076 (3)0.065 (3)0.086 (4)0.027 (3)0.018 (3)0.021 (3)
C280.074 (3)0.050 (3)0.041 (2)0.013 (2)0.006 (2)0.007 (2)
C290.051 (3)0.100 (4)0.116 (4)0.006 (3)0.008 (3)0.061 (4)
C300.092 (4)0.048 (3)0.104 (4)0.023 (3)0.034 (3)0.014 (3)
Geometric parameters (Å, º) top
Mn1—O1i2.156 (2)C3—C81.496 (4)
Mn1—O12.156 (2)C4—C51.388 (4)
Mn1—O7i2.159 (2)C4—C91.390 (4)
Mn1—O72.159 (2)C5—C61.388 (4)
Mn1—O13i2.204 (3)C5—H5A0.9300
Mn1—O132.204 (3)C6—C71.392 (4)
Mn2—O12ii2.146 (2)C7—C81.389 (4)
Mn2—O172.146 (3)C7—H7A0.9300
Mn2—O5iii2.154 (2)C8—C91.383 (4)
Mn2—O102.191 (2)C9—H9A0.9300
Mn2—O4i2.199 (2)C10—C131.496 (4)
Mn2—O142.213 (3)C11—C151.509 (4)
O1—C11.239 (3)C12—C171.504 (4)
O2—C11.274 (4)C13—C181.383 (4)
O3—C21.290 (4)C13—C141.394 (4)
O3—H30.8200C14—C151.380 (4)
O4—C21.231 (4)C14—H14A0.9300
O4—Mn2i2.199 (2)C15—C161.390 (4)
O5—C31.233 (4)C16—C171.382 (4)
O5—Mn2iv2.154 (2)C16—H16A0.9300
O6—C31.283 (4)C17—C181.396 (4)
O6—H60.8200C18—H18A0.9300
O7—C101.236 (4)C19—H19A0.9300
O8—C101.278 (4)C20—H20A0.9600
O8—H80.8200C20—H20B0.9600
O9—C111.273 (4)C20—H20C0.9600
O10—C111.238 (4)C21—H21A0.9600
O11—C121.261 (4)C21—H21B0.9600
O12—C121.247 (4)C21—H21C0.9600
O12—Mn2ii2.146 (2)C22—H220.9300
O13—C191.234 (5)C23—H23A0.9600
O14—C221.210 (4)C23—H23B0.9600
O15—C251.215 (5)C23—H23C0.9600
O16—C281.226 (5)C24—H24A0.9600
O17—H1W0.8500C24—H24B0.9600
O17—H2W0.8500C24—H24C0.9600
N1—C191.304 (5)C25—H25A0.9300
N1—C211.446 (6)C26—H26A0.9600
N1—C201.448 (6)C26—H26B0.9600
N2—C221.304 (5)C26—H26C0.9600
N2—C231.434 (6)C27—H27A0.9600
N2—C241.459 (6)C27—H27B0.9600
N3—C251.330 (5)C27—H27C0.9600
N3—C271.432 (5)C28—H280.9300
N3—C261.448 (5)C29—H29A0.9600
N4—C281.308 (5)C29—H29B0.9600
N4—C301.438 (5)C29—H29C0.9600
N4—C291.446 (5)C30—H30A0.9600
C1—C41.496 (4)C30—H30B0.9600
C2—C61.500 (4)C30—H30C0.9600
O1i—Mn1—O1180.00 (5)O8—C10—C13115.1 (3)
O1i—Mn1—O7i93.27 (9)O10—C11—O9125.0 (3)
O1—Mn1—O7i86.73 (9)O10—C11—C15119.5 (3)
O1i—Mn1—O786.73 (9)O9—C11—C15115.5 (3)
O1—Mn1—O793.27 (9)O12—C12—O11125.8 (3)
O7i—Mn1—O7180.00 (11)O12—C12—C17117.5 (3)
O1i—Mn1—O13i94.50 (10)O11—C12—C17116.7 (3)
O1—Mn1—O13i85.50 (10)C18—C13—C14119.3 (3)
O7i—Mn1—O13i92.31 (10)C18—C13—C10120.6 (3)
O7—Mn1—O13i87.69 (10)C14—C13—C10120.1 (3)
O1i—Mn1—O1385.50 (10)C15—C14—C13120.2 (3)
O1—Mn1—O1394.50 (10)C15—C14—H14A119.9
O7i—Mn1—O1387.69 (10)C13—C14—H14A119.9
O7—Mn1—O1392.31 (10)C14—C15—C16119.8 (3)
O13i—Mn1—O13180.0C14—C15—C11120.4 (3)
O12ii—Mn2—O1785.30 (9)C16—C15—C11119.7 (3)
O12ii—Mn2—O5iii175.24 (9)C17—C16—C15120.8 (3)
O17—Mn2—O5iii91.68 (9)C17—C16—H16A119.6
O12ii—Mn2—O1084.37 (9)C15—C16—H16A119.6
O17—Mn2—O10169.63 (9)C16—C17—C18118.8 (3)
O5iii—Mn2—O1098.57 (9)C16—C17—C12121.6 (3)
O12ii—Mn2—O4i97.58 (9)C18—C17—C12119.6 (3)
O17—Mn2—O4i91.90 (10)C13—C18—C17121.0 (3)
O5iii—Mn2—O4i86.18 (9)C13—C18—H18A119.5
O10—Mn2—O4i90.35 (9)C17—C18—H18A119.5
O12ii—Mn2—O1490.70 (10)O13—C19—N1127.2 (4)
O17—Mn2—O1491.98 (10)O13—C19—H19A116.4
O5iii—Mn2—O1485.72 (10)N1—C19—H19A116.4
O10—Mn2—O1487.24 (10)N1—C20—H20A109.5
O4i—Mn2—O14171.11 (9)N1—C20—H20B109.5
C1—O1—Mn1134.2 (2)H20A—C20—H20B109.5
C2—O3—H3109.5N1—C20—H20C109.5
C2—O4—Mn2i135.3 (2)H20A—C20—H20C109.5
C3—O5—Mn2iv136.4 (2)H20B—C20—H20C109.5
C3—O6—H6109.5N1—C21—H21A109.5
C10—O7—Mn1135.3 (2)N1—C21—H21B109.5
C10—O8—H8109.5H21A—C21—H21B109.5
C11—O10—Mn2130.3 (2)N1—C21—H21C109.5
C12—O12—Mn2ii131.1 (2)H21A—C21—H21C109.5
C19—O13—Mn1120.7 (3)H21B—C21—H21C109.5
C22—O14—Mn2122.6 (3)O14—C22—N2127.6 (4)
Mn2—O17—H1W122.8O14—C22—H22116.2
Mn2—O17—H2W132.6N2—C22—H22116.2
H1W—O17—H2W104.2N2—C23—H23A109.5
C19—N1—C21120.3 (4)N2—C23—H23B109.5
C19—N1—C20123.2 (5)H23A—C23—H23B109.5
C21—N1—C20116.5 (4)N2—C23—H23C109.5
C22—N2—C23121.5 (4)H23A—C23—H23C109.5
C22—N2—C24121.2 (4)H23B—C23—H23C109.5
C23—N2—C24117.3 (4)N2—C24—H24A109.5
C25—N3—C27120.5 (4)N2—C24—H24B109.5
C25—N3—C26122.5 (4)H24A—C24—H24B109.5
C27—N3—C26116.9 (4)N2—C24—H24C109.5
C28—N4—C30119.5 (4)H24A—C24—H24C109.5
C28—N4—C29121.3 (4)H24B—C24—H24C109.5
C30—N4—C29119.2 (4)O15—C25—N3125.2 (5)
O1—C1—O2124.2 (3)O15—C25—H25A117.4
O1—C1—C4119.2 (3)N3—C25—H25A117.4
O2—C1—C4116.6 (3)N3—C26—H26A109.5
O4—C2—O3125.1 (3)N3—C26—H26B109.5
O4—C2—C6120.1 (3)H26A—C26—H26B109.5
O3—C2—C6114.8 (3)N3—C26—H26C109.5
O5—C3—O6125.7 (3)H26A—C26—H26C109.5
O5—C3—C8119.5 (3)H26B—C26—H26C109.5
O6—C3—C8114.8 (3)N3—C27—H27A109.5
C5—C4—C9119.4 (3)N3—C27—H27B109.5
C5—C4—C1119.6 (3)H27A—C27—H27B109.5
C9—C4—C1120.8 (3)N3—C27—H27C109.5
C4—C5—C6120.8 (3)H27A—C27—H27C109.5
C4—C5—H5A119.6H27B—C27—H27C109.5
C6—C5—H5A119.6O16—C28—N4127.1 (4)
C5—C6—C7119.0 (3)O16—C28—H28116.5
C5—C6—C2121.8 (3)N4—C28—H28116.5
C7—C6—C2118.9 (3)N4—C29—H29A109.5
C8—C7—C6120.7 (3)N4—C29—H29B109.5
C8—C7—H7A119.6H29A—C29—H29B109.5
C6—C7—H7A119.6N4—C29—H29C109.5
C9—C8—C7119.5 (3)H29A—C29—H29C109.5
C9—C8—C3119.5 (3)H29B—C29—H29C109.5
C7—C8—C3120.9 (3)N4—C30—H30A109.5
C8—C9—C4120.6 (3)N4—C30—H30B109.5
C8—C9—H9A119.7H30A—C30—H30B109.5
C4—C9—H9A119.7N4—C30—H30C109.5
O7—C10—O8125.4 (3)H30A—C30—H30C109.5
O7—C10—C13119.5 (3)H30B—C30—H30C109.5
O1i—Mn1—O1—C15 (100)O6—C3—C8—C9172.0 (3)
O7i—Mn1—O1—C1109.8 (3)O5—C3—C8—C7169.0 (3)
O7—Mn1—O1—C170.2 (3)O6—C3—C8—C710.8 (5)
O13i—Mn1—O1—C1157.6 (3)C7—C8—C9—C42.0 (5)
O13—Mn1—O1—C122.4 (3)C3—C8—C9—C4179.3 (3)
O1i—Mn1—O7—C10116.8 (3)C5—C4—C9—C82.2 (5)
O1—Mn1—O7—C1063.2 (3)C1—C4—C9—C8178.0 (3)
O7i—Mn1—O7—C1049 (100)Mn1—O7—C10—O824.4 (5)
O13i—Mn1—O7—C10148.6 (3)Mn1—O7—C10—C13156.3 (2)
O13—Mn1—O7—C1031.4 (3)Mn2—O10—C11—O942.7 (5)
O12ii—Mn2—O10—C11117.4 (3)Mn2—O10—C11—C15136.3 (3)
O17—Mn2—O10—C11122.5 (5)Mn2ii—O12—C12—O1145.8 (5)
O5iii—Mn2—O10—C1166.3 (3)Mn2ii—O12—C12—C17135.1 (2)
O4i—Mn2—O10—C1119.9 (3)O7—C10—C13—C18169.7 (3)
O14—Mn2—O10—C11151.6 (3)O8—C10—C13—C189.7 (5)
O1i—Mn1—O13—C1947.3 (3)O7—C10—C13—C1411.2 (5)
O1—Mn1—O13—C19132.7 (3)O8—C10—C13—C14169.4 (3)
O7i—Mn1—O13—C1946.2 (3)C18—C13—C14—C152.2 (5)
O7—Mn1—O13—C19133.8 (3)C10—C13—C14—C15176.9 (3)
O13i—Mn1—O13—C1976 (100)C13—C14—C15—C162.3 (5)
O12ii—Mn2—O14—C2255.8 (3)C13—C14—C15—C11173.6 (3)
O17—Mn2—O14—C2229.6 (3)O10—C11—C15—C14158.2 (3)
O5iii—Mn2—O14—C22121.1 (3)O9—C11—C15—C1420.9 (5)
O10—Mn2—O14—C22140.1 (3)O10—C11—C15—C1617.7 (5)
O4i—Mn2—O14—C22145.4 (5)O9—C11—C15—C16163.2 (3)
Mn1—O1—C1—O237.4 (5)C14—C15—C16—C170.1 (5)
Mn1—O1—C1—C4142.3 (3)C11—C15—C16—C17175.8 (3)
Mn2i—O4—C2—O342.0 (5)C15—C16—C17—C182.2 (5)
Mn2i—O4—C2—C6135.3 (3)C15—C16—C17—C12179.9 (3)
Mn2iv—O5—C3—O625.9 (6)O12—C12—C17—C16176.9 (3)
Mn2iv—O5—C3—C8154.0 (2)O11—C12—C17—C163.9 (5)
O1—C1—C4—C52.6 (5)O12—C12—C17—C180.8 (5)
O2—C1—C4—C5177.0 (3)O11—C12—C17—C18178.4 (3)
O1—C1—C4—C9178.4 (3)C14—C13—C18—C170.2 (5)
O2—C1—C4—C91.2 (5)C10—C13—C18—C17179.3 (3)
C9—C4—C5—C60.7 (5)C16—C17—C18—C132.3 (5)
C1—C4—C5—C6176.6 (3)C12—C17—C18—C13179.9 (3)
C4—C5—C6—C70.9 (5)Mn1—O13—C19—N1171.1 (3)
C4—C5—C6—C2172.7 (3)C21—N1—C19—O130.9 (7)
O4—C2—C6—C5166.6 (3)C20—N1—C19—O13177.4 (5)
O3—C2—C6—C511.0 (5)Mn2—O14—C22—N2171.6 (3)
O4—C2—C6—C77.1 (5)C23—N2—C22—O140.8 (8)
O3—C2—C6—C7175.4 (3)C24—N2—C22—O14179.8 (5)
C5—C6—C7—C81.1 (5)C27—N3—C25—O152.2 (7)
C2—C6—C7—C8172.8 (3)C26—N3—C25—O15179.2 (4)
C6—C7—C8—C90.4 (5)C30—N4—C28—O161.1 (7)
C6—C7—C8—C3177.6 (3)C29—N4—C28—O16179.9 (4)
O5—C3—C8—C98.2 (5)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z1; (iv) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O20.821.672.448 (3)157
O17—H2W···O160.851.852.694 (4)176
O6—H6···O9iv0.821.692.452 (3)153
O3—H3···O11v0.821.692.463 (3)157
O17—H1W···O15vi0.851.922.713 (4)155
Symmetry codes: (iv) x, y1, z+1; (v) x+1, y1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn3(C9H4O6)2(C9H5O6)2(C3H7NO)4(H2O)2]·4C3H7NO
Mr1620.12
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.826 (2), 13.290 (3), 14.698 (3)
α, β, γ (°)73.22 (3), 83.32 (3), 89.79 (3)
V3)1824.2 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.19 × 0.15 × 0.13
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.894, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
18985, 6589, 5527
Rint0.041
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.116, 1.13
No. of reflections6589
No. of parameters478
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O20.821.672.448 (3)156.6
O17—H2W···O160.851.852.694 (4)175.8
O6—H6···O9i0.821.692.452 (3)153.0
O3—H3···O11ii0.821.692.463 (3)156.8
O17—H1W···O15iii0.851.922.713 (4)154.6
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The study was supported by the Science and Technology Department of Henan Province (082102330003).

References

First citationHu, J.-S., Huang, L.-F., Yao, X.-Q., Qin, L., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2011). Inorg. Chem. 50, 2404–2414.  Web of Science CSD CrossRef CAS PubMed
First citationPrajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600–608.  Web of Science CSD CrossRef CAS
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m697-m698
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds