metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m613-m614

catena-Poly[[silver(I)-μ-4,4′-bi­pyridine-κ2N:N′] 4-[2-(4-carb­­oxy­phen­yl)-1,1,1,3,3,3-hexa­fluoro­propan-2-yl]benzoate]

aCollege of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang Jiaxing 314001, People's Republic of China
*Correspondence e-mail: jiangjxj@yahoo.cn

(Received 23 March 2012; accepted 7 April 2012; online 18 April 2012)

Assembly of the flexible dicarb­oxy­lic ligand 4-[2-(4-carboxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]benzoate and 4,4′-bipyridine as co-ligand with AgI ions resulted in the formation of the polymeric title compound, {[Ag(C10H8N2)](C17H9F6O4)}n, in which the metal atoms are bridged by the 4,4′-bipyridine ligands, generating cationic chains extending along [010]. The dihedral angles between the benzene rings in the anion and the pyridine rings in the cation are 72.42 (9) and 9.36 (10)°, respectively. The mol­ecular conformation of the anion is stabilized by intra­molecular C—H⋯F hydrogen bonds. In the crystal, the anions inter­act with the cationic chains via C—H⋯O hydrogen bonds, forming layers parallel to (001), in which weak ππ stacking inter­actions [centroid–centroid distances = 3.975 (3)–4.047 (3) Å] involving the pyridine rings of adjacent 4,4′-bipyridine ligands are present. The planes are further assembled into a three-dimensional network by O—H⋯O hydrogen bonds.

Related literature

For background to metal-organic frameworks, see: Du et al. (2007[Du, M., Zhang, Z.-H., Tang, L.-F., Wang, X.-G., Zhao, X.-J. & Batten, S. R. (2007). Chem. Eur. J. 13, 2578-2586.]); Li & Du (2011[Li, C.-P. & Du, M. (2011). Chem. Commun. 47, 5958-5972.]); Hosseini (2005[Hosseini, M. W. (2005). Acc. Chem. Res. 38, 313-323.]). For metallosupra­molecular architectures, see: Brammer (2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]); Peedikakkal & Vittal (2011[Peedikakkal, A. M. P. & Vittal, J. J. (2011). Cryst. Growth Des. 11, 4697-4703.]). For coordination frameworks constructed from pyridyl and carboxyl­ate spacers, see: Li et al. (2012[Li, X. L., Liu, G. Z., Xin, L. Y. & Wang, L. Y. (2012). CrystEngComm, 14, 1729-1736.]). For weak cooperative inter­molecular inter­actions, see: Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]). For flexible polycarboxyl ligands, see: Liu et al. (2011[Liu, J. Q., Wang, Y. Y. & Jia, Z. B. (2011). Inorg. Chem. Commun. 14, 519-521.]). For the structures of metal complexes derived from 4-[2-(4-carboxy­phenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]benzoate, see: Jiang et al. (2009[Jiang, X.-J., Zhang, S.-Z., Guo, J.-H., Wang, X.-G., Li, J.-S. & Du, M. (2009). CrystEngComm, 11, 855-864.]); Ji et al. (2010[Ji, C., Huang, L., Li, J., Zheng, H., Li, Y. & Guo, Z. (2010). Dalton Trans. 39, 8240-8247.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H8N2)](C17H9F6O4)

  • Mr = 655.30

  • Monoclinic, P 21 /c

  • a = 16.434 (7) Å

  • b = 11.436 (5) Å

  • c = 14.320 (6) Å

  • β = 104.310 (7)°

  • V = 2607.9 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.817, Tmax = 0.862

  • 12604 measured reflections

  • 4604 independent reflections

  • 3593 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.06

  • 4604 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 1.72 2.538 (2) 174
C4—H4A⋯O1ii 0.93 2.52 3.366 (4) 152
C7—H7⋯O1ii 0.93 2.54 3.297 (4) 138
C8—H8⋯O3 0.93 2.53 3.312 (4) 142
C9—H9⋯O2iii 0.93 2.48 3.242 (4) 139
C16—H16⋯F4 0.93 2.35 2.992 (4) 126
C26—H26⋯F3 0.93 2.33 2.941 (4) 123
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research on metal-organic frameworks (MOFs) has been rapidly developed to produce new materials with fascinating structural topologies and potential applications (Du et al., 2007; Li & Du, 2011; Hosseini et al., 2005). Generally, the diversity of the network structures of such materials greatly depends on the selection of the well designed organic ligands and metal centers, and a variety of novel metallosupramolecular architectures have been obtained so far (Brammer et al., 2004; Peedikakkal et al., 2011). Accordingly, ligands with certain functional groups, such as pyridyl and carboxylate have been widely explored to construct such coordination frameworks (Li et al., 2012). In addition, aside from the fundamental coordination driven force, other weak cooperative intermolecular interactions such as hydrogen bonding and aromatic stacking are also useful tools in the construction of such crystalline solids (Ye et al., 2005). Among the versatile dicarboxylate tectons, the conformational freedom nature of the flexible polycarboxyl modules may provide more possibility for the construction of unusual coordination frameworks compared with rigid ligands (Liu et al., 2011). 4,4'-(Hexafluoroisopropylidene)bis(benzoic acid) (H2L) as a V-shaped flexible dicarboxyl ligand has been investigated for its bent geometry, which can induce novel topological motifs and potential functional materials (Jiang et al., 2009; Ji et al., 2010). Herein the synthesis and structure of a new crystalline complex is reported, generated from the incorporation of the V-shaped dicarboxyl spacer H2L with 4,4'-bipyridine (bipy) as co-ligand and AgI ion, which displays a one-dimensional polymeric chain motif.

The asymmetric unit of the title compound consists of one silver(I) cation, one bipy molecule and one HL anion (Fig. 1). Each metal atom is coordinated in a nearly linear geometry (N2—Ag1—N1i = 171.36 (9)°; symmetry code: (i) x, -1+y, z) by a pair of nitrogen donors from two bipy molecules, forming one-dimensional polymeric chain motifs along the [010] direction with Ag···Ag separations of 11.436 (5) Å. If the Ag···O separations with the monoprotonated carboxylate anion are considered (Ag1···O2, 2.680 (2) Å; Ag1···O1, 2.701 (2) Å), the HL ligands can be seen as pendants of the Ag-bipy chains. In the cation, the dihedral angle formed by the pyridine rings is 72.42 (9)°, while the dihedral angle formed by the benzene rings in the anion is 9.36 (10)°. The molecular conformation of the anion is enforced by intramolecular C—H···F hydrogen bonds (Table 1). In the crystal packing, anions and cationic chains interact through C—H···O hydrogen bonds to generate layers parallel to the ab plane. In each layer, weak ππ stacking interactions (centroid-to-centroid distances = 3.975 (3)–4.047 (3) Å) involving the pyridine rings of adjacent bipy ligands are observed (Fig. 2). Interplanar O—H···O hydrogen bond involving the carboxylic and carboxylate groups further assemble the layers in a three-dimensional network.

Related literature top

For background to metal-organic frameworks, see: Du et al. (2007); Li & Du (2011); Hosseini (2005). For metallosupramolecular architectures, see: Brammer (2004); Peedikakkal & Vittal (2011). For coordination frameworks constructed from pyridyl and carboxylate spacers, see: Li et al. (2012). For weak cooperative intermolecular interactions, see: Ye et al. (2005). For flexible polycarboxyl ligands, see: Liu et al. (2011). For the structures of 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) complexes, see: Jiang et al. (2009); Ji et al. (2010).

Experimental top

A mixture of H2L (20.2 mg, 0.05 mmol), silver acetate (16.8 mg, 0.10 mmol), 4,4'-bipyridine (15.4 mg, 0.10 mmol) and water (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated at 433°C for three days and then cooled to room temperature. Colourless needle-like crystals of title compound were obtained in 61% yield (20.0 mg, based on H2L).

Refinement top

The carbonyl H atom was first located in a difference Fourier map and then refined with O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were placed at calculated positions and refined as riding with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with 30% probability displacement ellipsoids [symmetry codes: (i) x, -1+y, z; (ii) = x, 1+y,z).
[Figure 2] Fig. 2. View of the 3-D supramolecular organization of the title compound constructed from ππ stacking interactions (green dotted lines) and hydrogen bonds (dotted lines). Overlapping layers parallel to the ab plane are coloured in blue and magenta.
catena-Poly[[silver(I)-µ-4,4'-bipyridine-κ2N:N'] 4-[2-(4-carboxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]benzoate] top
Crystal data top
[Ag(C10H8N2)](C17H9F6O4)F(000) = 1304
Mr = 655.30Dx = 1.669 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3592 reflections
a = 16.434 (7) Åθ = 2.6–25.0°
b = 11.436 (5) ŵ = 0.85 mm1
c = 14.320 (6) ÅT = 296 K
β = 104.310 (7)°Block, colourless
V = 2607.9 (19) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4604 independent reflections
Radiation source: fine-focus sealed tube3593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1918
Tmin = 0.817, Tmax = 0.862k = 1311
12604 measured reflectionsl = 1317
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.8598P]
where P = (Fo2 + 2Fc2)/3
4604 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ag(C10H8N2)](C17H9F6O4)V = 2607.9 (19) Å3
Mr = 655.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.434 (7) ŵ = 0.85 mm1
b = 11.436 (5) ÅT = 296 K
c = 14.320 (6) Å0.24 × 0.20 × 0.18 mm
β = 104.310 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4604 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3593 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.862Rint = 0.029
12604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
4604 reflectionsΔρmin = 0.47 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.530651 (16)0.082641 (18)0.622126 (19)0.04658 (10)
F10.02974 (15)0.6454 (2)0.92201 (18)0.0909 (8)
F20.06031 (13)0.61728 (17)0.78671 (18)0.0684 (6)
F30.15860 (14)0.6401 (2)0.91554 (16)0.0829 (7)
F40.09383 (15)0.8354 (2)1.01974 (14)0.0868 (8)
F50.10424 (14)0.9881 (2)0.93702 (15)0.0757 (7)
F60.20357 (13)0.8623 (3)0.96704 (15)0.0886 (8)
O10.32135 (14)0.9301 (2)0.75562 (17)0.0601 (7)
O20.31043 (12)0.90448 (18)0.60650 (15)0.0447 (5)
O30.33356 (15)0.9023 (2)0.56863 (18)0.0608 (7)
O40.24921 (14)1.05711 (19)0.53684 (16)0.0484 (6)
H40.27131.06570.49190.073*
N10.52282 (16)0.7266 (2)0.62575 (17)0.0404 (6)
N20.51817 (15)0.1071 (2)0.61686 (17)0.0368 (6)
C10.58883 (19)0.2880 (2)0.6165 (2)0.0423 (8)
H10.63750.32700.61230.051*
C20.5861 (2)0.1688 (2)0.6116 (2)0.0424 (8)
H20.63340.12880.60430.051*
C30.4518 (2)0.1674 (3)0.6274 (2)0.0449 (8)
H30.40390.12620.63060.054*
C40.45017 (19)0.2870 (2)0.6337 (2)0.0412 (8)
H4A0.40230.32470.64210.049*
C50.52023 (17)0.3515 (2)0.62763 (19)0.0314 (7)
C60.52118 (18)0.4813 (2)0.63058 (19)0.0331 (7)
C70.44988 (19)0.5469 (2)0.6263 (2)0.0398 (7)
H70.39930.50960.62510.048*
C80.4531 (2)0.6668 (2)0.6239 (2)0.0416 (8)
H80.40380.70830.62070.050*
C90.5923 (2)0.6642 (3)0.6312 (3)0.0568 (10)
H90.64210.70400.63310.068*
C100.5941 (2)0.5440 (3)0.6341 (3)0.0545 (9)
H100.64450.50460.63850.065*
C110.27936 (19)0.9090 (2)0.6968 (2)0.0399 (7)
C120.18662 (18)0.8837 (3)0.7344 (2)0.0385 (7)
C130.13701 (19)0.8418 (3)0.6766 (2)0.0410 (7)
H130.16090.82750.61170.049*
C140.05230 (19)0.8210 (3)0.7143 (2)0.0430 (8)
H140.01990.79350.67410.052*
C150.01503 (19)0.8405 (3)0.8103 (2)0.0396 (7)
C160.0646 (2)0.8806 (3)0.8685 (2)0.0558 (9)
H160.04100.89340.93370.067*
C170.1491 (2)0.9019 (3)0.8306 (2)0.0538 (9)
H170.18140.92910.87100.065*
C180.07922 (19)0.8103 (3)0.8496 (2)0.0434 (8)
C190.0819 (2)0.6771 (4)0.8687 (3)0.0611 (10)
C200.1197 (2)0.8734 (4)0.9440 (3)0.0638 (10)
C210.13085 (18)0.8446 (3)0.7768 (2)0.0389 (7)
C220.1201 (2)0.9558 (3)0.7381 (2)0.0479 (8)
H220.08091.00550.75420.057*
C230.1665 (2)0.9947 (3)0.6759 (2)0.0472 (8)
H230.15861.07020.65120.057*
C240.22482 (18)0.9221 (3)0.6502 (2)0.0387 (7)
C250.2352 (2)0.8112 (3)0.6884 (2)0.0461 (8)
H250.27400.76150.67160.055*
C260.18943 (19)0.7715 (3)0.7511 (2)0.0452 (8)
H260.19780.69620.77610.054*
C270.27476 (19)0.9585 (3)0.5814 (2)0.0408 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04784 (17)0.02023 (13)0.06987 (19)0.00120 (10)0.01111 (12)0.00107 (11)
F10.0822 (18)0.0897 (17)0.116 (2)0.0119 (14)0.0525 (16)0.0463 (15)
F20.0601 (14)0.0440 (11)0.1002 (17)0.0030 (10)0.0179 (12)0.0053 (12)
F30.0614 (15)0.0972 (17)0.0862 (16)0.0294 (13)0.0110 (12)0.0452 (14)
F40.0702 (16)0.150 (2)0.0394 (12)0.0082 (15)0.0126 (11)0.0089 (13)
F50.0730 (16)0.0876 (17)0.0653 (14)0.0097 (13)0.0145 (11)0.0295 (13)
F60.0400 (13)0.155 (2)0.0620 (13)0.0041 (14)0.0043 (10)0.0173 (15)
O10.0368 (14)0.0868 (19)0.0628 (15)0.0103 (12)0.0241 (12)0.0029 (13)
O20.0298 (12)0.0521 (14)0.0524 (14)0.0024 (10)0.0106 (10)0.0057 (11)
O30.0441 (15)0.0664 (17)0.0788 (17)0.0175 (12)0.0285 (13)0.0164 (13)
O40.0456 (14)0.0492 (13)0.0532 (14)0.0041 (11)0.0173 (11)0.0054 (11)
N10.0398 (16)0.0243 (13)0.0561 (16)0.0021 (11)0.0095 (12)0.0007 (11)
N20.0363 (16)0.0247 (13)0.0467 (15)0.0017 (10)0.0050 (12)0.0012 (10)
C10.0346 (18)0.0278 (15)0.066 (2)0.0027 (13)0.0154 (16)0.0025 (14)
C20.0369 (19)0.0289 (15)0.064 (2)0.0056 (13)0.0182 (16)0.0020 (15)
C30.038 (2)0.0294 (16)0.066 (2)0.0050 (14)0.0113 (16)0.0012 (15)
C40.0319 (18)0.0280 (15)0.065 (2)0.0019 (12)0.0147 (15)0.0002 (14)
C50.0338 (18)0.0251 (15)0.0343 (15)0.0030 (12)0.0064 (13)0.0000 (12)
C60.0368 (18)0.0236 (15)0.0393 (17)0.0010 (12)0.0102 (13)0.0002 (12)
C70.0333 (18)0.0265 (15)0.063 (2)0.0005 (12)0.0177 (15)0.0014 (14)
C80.038 (2)0.0272 (15)0.063 (2)0.0080 (13)0.0193 (16)0.0023 (14)
C90.038 (2)0.0297 (17)0.101 (3)0.0049 (14)0.0131 (19)0.0053 (18)
C100.0336 (19)0.0281 (16)0.100 (3)0.0026 (14)0.0124 (18)0.0043 (17)
C110.0321 (17)0.0323 (16)0.057 (2)0.0007 (13)0.0138 (16)0.0050 (15)
C120.0308 (17)0.0368 (16)0.0505 (19)0.0014 (13)0.0150 (14)0.0009 (14)
C130.0338 (18)0.0466 (18)0.0408 (17)0.0034 (14)0.0060 (14)0.0029 (15)
C140.0350 (19)0.0513 (19)0.0442 (18)0.0081 (15)0.0129 (15)0.0053 (15)
C150.0303 (18)0.0459 (18)0.0423 (18)0.0006 (14)0.0087 (14)0.0027 (14)
C160.040 (2)0.088 (3)0.0399 (19)0.0051 (19)0.0112 (15)0.0084 (18)
C170.038 (2)0.077 (3)0.051 (2)0.0028 (18)0.0194 (16)0.0100 (18)
C180.0349 (19)0.055 (2)0.0395 (18)0.0039 (15)0.0073 (14)0.0052 (15)
C190.045 (2)0.069 (3)0.071 (3)0.0093 (19)0.018 (2)0.027 (2)
C200.043 (2)0.098 (3)0.049 (2)0.006 (2)0.0063 (18)0.004 (2)
C210.0263 (17)0.0460 (18)0.0414 (17)0.0026 (13)0.0028 (13)0.0007 (14)
C220.041 (2)0.0462 (19)0.062 (2)0.0112 (15)0.0232 (17)0.0015 (16)
C230.042 (2)0.0393 (18)0.063 (2)0.0063 (15)0.0182 (17)0.0059 (16)
C240.0271 (16)0.0458 (18)0.0406 (17)0.0006 (14)0.0033 (13)0.0029 (15)
C250.039 (2)0.049 (2)0.052 (2)0.0141 (15)0.0130 (16)0.0012 (16)
C260.0374 (19)0.0458 (19)0.052 (2)0.0113 (15)0.0110 (15)0.0051 (15)
C270.0292 (18)0.0460 (18)0.0438 (18)0.0028 (14)0.0025 (14)0.0025 (15)
Geometric parameters (Å, º) top
Ag1—N22.179 (2)C8—H80.9300
Ag1—N1i2.186 (2)C9—C101.376 (4)
F1—C191.332 (4)C9—H90.9300
F2—C191.329 (4)C10—H100.9300
F3—C191.342 (4)C11—C121.514 (4)
F4—C201.332 (4)C12—C171.380 (4)
F5—C201.335 (5)C12—C131.383 (4)
F6—C201.341 (4)C13—C141.384 (4)
O1—C111.238 (4)C13—H130.9300
O2—C111.268 (4)C14—C151.378 (4)
O3—C271.212 (4)C14—H140.9300
O4—C271.312 (4)C15—C161.380 (4)
O4—H40.8200C15—C181.551 (4)
N1—C81.330 (4)C16—C171.381 (5)
N1—C91.332 (4)C16—H160.9300
N1—Ag1ii2.186 (2)C17—H170.9300
N2—C31.330 (4)C18—C201.532 (5)
N2—C21.338 (4)C18—C191.546 (5)
C1—C21.365 (4)C18—C211.549 (4)
C1—C51.383 (4)C21—C221.382 (4)
C1—H10.9300C21—C261.391 (4)
C2—H20.9300C22—C231.381 (4)
C3—C41.371 (4)C22—H220.9300
C3—H30.9300C23—C241.384 (4)
C4—C51.388 (4)C23—H230.9300
C4—H4A0.9300C24—C251.375 (4)
C5—C61.485 (4)C24—C271.490 (4)
C6—C71.380 (4)C25—C261.383 (4)
C6—C101.387 (4)C25—H250.9300
C7—C81.373 (4)C26—H260.9300
C7—H70.9300
N2—Ag1—N1i171.36 (9)C13—C14—H14119.4
C27—O4—H4109.5C14—C15—C16118.2 (3)
C8—N1—C9116.6 (3)C14—C15—C18118.9 (3)
C8—N1—Ag1ii124.66 (19)C16—C15—C18122.8 (3)
C9—N1—Ag1ii118.7 (2)C15—C16—C17120.5 (3)
C3—N2—C2116.8 (3)C15—C16—H16119.7
C3—N2—Ag1125.8 (2)C17—C16—H16119.7
C2—N2—Ag1117.01 (19)C12—C17—C16121.5 (3)
C2—C1—C5120.8 (3)C12—C17—H17119.2
C2—C1—H1119.6C16—C17—H17119.2
C5—C1—H1119.6C20—C18—C19108.8 (3)
N2—C2—C1122.8 (3)C20—C18—C21106.5 (3)
N2—C2—H2118.6C19—C18—C21111.8 (3)
C1—C2—H2118.6C20—C18—C15113.1 (3)
N2—C3—C4123.7 (3)C19—C18—C15105.4 (3)
N2—C3—H3118.1C21—C18—C15111.3 (2)
C4—C3—H3118.1F2—C19—F1107.3 (3)
C3—C4—C5119.7 (3)F2—C19—F3107.0 (3)
C3—C4—H4A120.1F1—C19—F3106.6 (3)
C5—C4—H4A120.1F2—C19—C18111.2 (3)
C1—C5—C4116.1 (3)F1—C19—C18112.0 (3)
C1—C5—C6121.7 (3)F3—C19—C18112.4 (3)
C4—C5—C6122.2 (3)F4—C20—F5106.8 (3)
C7—C6—C10116.0 (3)F4—C20—F6106.5 (3)
C7—C6—C5122.6 (3)F5—C20—F6106.1 (3)
C10—C6—C5121.4 (3)F4—C20—C18114.1 (3)
C8—C7—C6120.4 (3)F5—C20—C18111.3 (3)
C8—C7—H7119.8F6—C20—C18111.6 (3)
C6—C7—H7119.8C22—C21—C26118.3 (3)
N1—C8—C7123.5 (3)C22—C21—C18117.8 (3)
N1—C8—H8118.2C26—C21—C18123.8 (3)
C7—C8—H8118.2C23—C22—C21121.3 (3)
N1—C9—C10123.3 (3)C23—C22—H22119.4
N1—C9—H9118.4C21—C22—H22119.4
C10—C9—H9118.4C22—C23—C24120.4 (3)
C9—C10—C6120.2 (3)C22—C23—H23119.8
C9—C10—H10119.9C24—C23—H23119.8
C6—C10—H10119.9C25—C24—C23118.3 (3)
O1—C11—O2123.4 (3)C25—C24—C27119.1 (3)
O1—C11—C12118.5 (3)C23—C24—C27122.6 (3)
O2—C11—C12118.1 (3)C24—C25—C26121.8 (3)
C17—C12—C13117.8 (3)C24—C25—H25119.1
C17—C12—C11119.3 (3)C26—C25—H25119.1
C13—C12—C11123.0 (3)C25—C26—C21119.9 (3)
C12—C13—C14120.8 (3)C25—C26—H26120.1
C12—C13—H13119.6C21—C26—H26120.1
C14—C13—H13119.6O3—C27—O4123.7 (3)
C15—C14—C13121.2 (3)O3—C27—C24122.8 (3)
C15—C14—H14119.4O4—C27—C24113.5 (3)
C3—N2—C2—C10.1 (5)C16—C15—C18—C1995.2 (4)
Ag1—N2—C2—C1174.0 (2)C14—C15—C18—C2140.0 (4)
C5—C1—C2—N20.2 (5)C16—C15—C18—C21143.4 (3)
C2—N2—C3—C40.5 (5)C20—C18—C19—F2169.7 (3)
Ag1—N2—C3—C4172.8 (2)C21—C18—C19—F252.4 (4)
N2—C3—C4—C51.0 (5)C15—C18—C19—F268.7 (3)
C2—C1—C5—C40.2 (4)C20—C18—C19—F170.2 (4)
C2—C1—C5—C6178.4 (3)C21—C18—C19—F1172.5 (3)
C3—C4—C5—C10.8 (4)C15—C18—C19—F151.4 (4)
C3—C4—C5—C6177.8 (3)C20—C18—C19—F349.8 (4)
C1—C5—C6—C7169.5 (3)C21—C18—C19—F367.5 (4)
C4—C5—C6—C79.0 (4)C15—C18—C19—F3171.4 (3)
C1—C5—C6—C108.0 (4)C19—C18—C20—F446.5 (4)
C4—C5—C6—C10173.4 (3)C21—C18—C20—F4167.1 (3)
C10—C6—C7—C81.3 (4)C15—C18—C20—F470.3 (4)
C5—C6—C7—C8176.3 (3)C19—C18—C20—F5167.4 (3)
C9—N1—C8—C70.6 (5)C21—C18—C20—F572.0 (3)
Ag1ii—N1—C8—C7179.9 (2)C15—C18—C20—F550.6 (4)
C6—C7—C8—N10.3 (5)C19—C18—C20—F674.3 (4)
C8—N1—C9—C100.5 (5)C21—C18—C20—F646.4 (4)
Ag1ii—N1—C9—C10179.8 (3)C15—C18—C20—F6168.9 (3)
N1—C9—C10—C60.6 (6)C20—C18—C21—C2274.4 (4)
C7—C6—C10—C91.4 (5)C19—C18—C21—C22166.9 (3)
C5—C6—C10—C9176.2 (3)C15—C18—C21—C2249.3 (4)
O1—C11—C12—C179.6 (4)C20—C18—C21—C26103.1 (4)
O2—C11—C12—C17172.1 (3)C19—C18—C21—C2615.6 (4)
O1—C11—C12—C13169.8 (3)C15—C18—C21—C26133.2 (3)
O2—C11—C12—C138.4 (4)C26—C21—C22—C230.5 (5)
C17—C12—C13—C141.1 (5)C18—C21—C22—C23177.1 (3)
C11—C12—C13—C14179.4 (3)C21—C22—C23—C240.5 (5)
C12—C13—C14—C150.5 (5)C22—C23—C24—C250.2 (5)
C13—C14—C15—C160.4 (5)C22—C23—C24—C27178.2 (3)
C13—C14—C15—C18177.2 (3)C23—C24—C25—C260.2 (5)
C14—C15—C16—C170.8 (5)C27—C24—C25—C26178.6 (3)
C18—C15—C16—C17177.4 (3)C24—C25—C26—C210.2 (5)
C13—C12—C17—C160.8 (5)C22—C21—C26—C250.1 (5)
C11—C12—C17—C16179.7 (3)C18—C21—C26—C25177.3 (3)
C15—C16—C17—C120.1 (6)C25—C24—C27—O312.0 (4)
C14—C15—C18—C20159.8 (3)C23—C24—C27—O3169.6 (3)
C16—C15—C18—C2023.6 (5)C25—C24—C27—O4168.5 (3)
C14—C15—C18—C1981.5 (4)C23—C24—C27—O49.9 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2iii0.821.722.538 (2)174
C4—H4A···O1iv0.932.523.366 (4)152
C7—H7···O1iv0.932.543.297 (4)138
C8—H8···O30.932.533.312 (4)142
C9—H9···O2v0.932.483.242 (4)139
C16—H16···F40.932.352.992 (4)126
C26—H26···F30.932.332.941 (4)123
Symmetry codes: (iii) x, y+2, z+1; (iv) x, y1/2, z+3/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C10H8N2)](C17H9F6O4)
Mr655.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.434 (7), 11.436 (5), 14.320 (6)
β (°) 104.310 (7)
V3)2607.9 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.817, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
12604, 4604, 3593
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.06
No. of reflections4604
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.47

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.821.722.538 (2)174
C4—H4A···O1ii0.932.523.366 (4)152
C7—H7···O1ii0.932.543.297 (4)138
C8—H8···O30.932.533.312 (4)142
C9—H9···O2iii0.932.483.242 (4)139
C16—H16···F40.932.352.992 (4)126
C26—H26···F30.932.332.941 (4)123
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1/2, z+3/2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Jiaxing University (grant No. 70509014) and the Key Project of Jiaxing University (grant No. 70110X13BL).

References

First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Zhang, Z.-H., Tang, L.-F., Wang, X.-G., Zhao, X.-J. & Batten, S. R. (2007). Chem. Eur. J. 13, 2578–2586.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHosseini, M. W. (2005). Acc. Chem. Res. 38, 313–323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJi, C., Huang, L., Li, J., Zheng, H., Li, Y. & Guo, Z. (2010). Dalton Trans. 39, 8240–8247.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJiang, X.-J., Zhang, S.-Z., Guo, J.-H., Wang, X.-G., Li, J.-S. & Du, M. (2009). CrystEngComm, 11, 855–864.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C.-P. & Du, M. (2011). Chem. Commun. 47, 5958–5972.  Web of Science CrossRef CAS Google Scholar
First citationLi, X. L., Liu, G. Z., Xin, L. Y. & Wang, L. Y. (2012). CrystEngComm, 14, 1729–1736.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. Q., Wang, Y. Y. & Jia, Z. B. (2011). Inorg. Chem. Commun. 14, 519–521.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeedikakkal, A. M. P. & Vittal, J. J. (2011). Cryst. Growth Des. 11, 4697–4703.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m613-m614
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds