organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1485

1-(Bi­phenyl-4-ylcarbon­yl)-3-(2-chloro-4-nitro­phen­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Menggabang Telipot, 21030 Kuala Terengganu, Malaysia, bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and cKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
*Correspondence e-mail: nurziana@iium.edu.my

(Received 3 April 2012; accepted 17 April 2012; online 21 April 2012)

The benzene rings of the biphenyl group in the title compound, C20H14ClN3O3S, are nearly coplanar [maximum deviation = 0.20 (3) Å]. The mean plane of the biphenyl group forms a dihedral angle of 5.24 (7)° with the aromatic ring of the nitro­chloro­benzene group. Intra­molecular N—H⋯Cl, N—H⋯O and C—H⋯S hydrogen bonds stabilize the cis–trans conformation of the mol­ecule. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯S hydrogen bonds into mutually inter­woven corrugated layers parallel to (10-2).

Related literature

For a related structure, see: Yusof et al. (2011[Yusof, M. S. M., Wong, S. T. & Yamin, B. M. (2011). Acta Cryst. E67, o2483.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14ClN3O3S

  • Mr = 411.85

  • Monoclinic, P 21 /c

  • a = 10.889 (2) Å

  • b = 5.4502 (10) Å

  • c = 30.532 (5) Å

  • β = 99.202 (4)°

  • V = 1788.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.35 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.972

  • 9537 measured reflections

  • 3154 independent reflections

  • 2704 reflections with I > 2/s(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.16

  • 3154 reflections

  • 253 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.86 2.43 2.938 (2) 118
N2—H2A⋯O1 0.86 1.87 2.608 (3) 143
C16—H16A⋯S1 0.93 2.53 3.208 (3) 130
C10—H10A⋯O3i 0.93 2.57 3.354 (4) 142
C17—H17A⋯S1ii 0.93 2.77 3.673 (3) 165
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), is similiar to the previously reported compound 1-(biphenyl-4-yl-carbonyl)-3-(4-nitrophenyl)thiourea (II) (Yusof et al., 2011) except for the presence of a chlorine atom at 2-position of the nitrobenzene ring. The bond lengths and angles are in normal ranges (Allen et al. 1987) and comparable to those reported for (II). The molecule (Fig. 1) is essentially planar, with a maximum deviation of 0.076 (2) Å for atom N1. The introduction of a chlorine substituent at the 2-position of the nitrobenzene ring makes the two benzene rings in biphenyl group nearly coplanar, forming a dihedral angle of 1.02 (14)° compared to that of 40.11 (15)° observed in II. The thiourea moiety makes dihedral angle of 6.15 (10)° and 0.92 (10)° with the C1—C6 and C15—C20 rings, respectively, compared to the corresponding angles of 16.14 (13)° and 17.75 (14)° in II. The cis-trans conformation of the molecule is stabilized by intramolecular N2—H2A···Cl1, N2—H2A···O1 and C16—H16A···S1 hydrogen interactions (Table 1). In the crystal structure (Fig. 2), the molecules interact through intermolecular C—H···O and C—H···S hydrogen bonds to form mutually interwoven corrugated layers parallel to the (1 0 -2) plane.

Related literature top

For a related structure, see: Yusof et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

An acetone (30 ml) solution of 2-chloro-4-nitroaniline (1.60 g, 9.5 mmol) was added to a round-bottom flask containing 4-biphenylcarbonyl chloride (2.00 g, 9.5 mmol) and ammonium thiocyanate (0.70 g, 9.5 mmol). The mixture was refluxed for 2.5 h then filtered off and left to evaporate at room temperature. The yellowish precipitate obtained was washed with water and cold ethanol. Yellowish crystals suitable for X-ray analysis were obtained by recrystallization of the precipitate in DMSO.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). A rigid body restraint (DELU in SHELXL-97; Sheldrick, 2008) was applied for atoms N3, O2 and O3.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsods drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
1-(Biphenyl-4-ylcarbonyl)-3-(2-chloro-4-nitrophenyl)thiourea top
Crystal data top
C20H14ClN3O3SF(000) = 848
Mr = 411.85Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1235 reflections
a = 10.889 (2) Åθ = 1.9–25.0°
b = 5.4502 (10) ŵ = 0.36 mm1
c = 30.532 (5) ÅT = 298 K
β = 99.202 (4)°Slab, yellow
V = 1788.6 (6) Å30.35 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3154 independent reflections
Radiation source: fine-focus sealed tube2704 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.026
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scanh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 66
Tmin = 0.885, Tmax = 0.972l = 3536
9537 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.5419P]
where P = (Fo2 + 2Fc2)/3
3154 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 0.25 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H14ClN3O3SV = 1788.6 (6) Å3
Mr = 411.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.889 (2) ŵ = 0.36 mm1
b = 5.4502 (10) ÅT = 298 K
c = 30.532 (5) Å0.35 × 0.13 × 0.08 mm
β = 99.202 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2704 reflections with I > 2/s(I)
Tmin = 0.885, Tmax = 0.972Rint = 0.026
9537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.16Δρmax = 0.25 e Å3
3154 reflectionsΔρmin = 0.24 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66457 (7)0.06984 (14)0.93137 (2)0.0553 (3)
Cl10.88661 (6)0.87141 (13)1.03030 (2)0.0511 (2)
O10.9472 (2)0.6794 (4)0.93384 (7)0.0691 (7)
O20.5004 (3)0.4603 (5)1.13921 (9)0.0849 (8)
O30.6132 (2)0.7850 (5)1.15220 (7)0.0701 (6)
N10.8315 (2)0.3541 (4)0.90589 (7)0.0449 (5)
H1A0.81620.26130.88290.054*
N20.7806 (2)0.4647 (4)0.97322 (7)0.0456 (5)
H2A0.83660.57310.97090.055*
N30.5772 (2)0.6060 (5)1.12973 (9)0.0559 (6)
C11.0767 (3)0.7043 (5)0.86344 (10)0.0538 (7)
H1B1.08560.82960.88440.065*
C21.1482 (3)0.7078 (5)0.83008 (9)0.0509 (7)
H2B1.20400.83590.82900.061*
C31.1390 (2)0.5250 (5)0.79806 (8)0.0374 (6)
C41.0527 (3)0.3419 (5)0.80119 (9)0.0520 (7)
H4A1.04320.21710.78010.062*
C50.9802 (3)0.3377 (5)0.83435 (9)0.0509 (7)
H5A0.92280.21190.83510.061*
C60.9919 (2)0.5184 (5)0.86650 (8)0.0394 (6)
C71.2173 (2)0.5270 (5)0.76232 (8)0.0393 (6)
C81.3045 (3)0.7076 (6)0.75971 (10)0.0609 (8)
H8A1.31530.83150.78090.073*
C91.3767 (3)0.7083 (7)0.72601 (11)0.0681 (9)
H9A1.43420.83330.72480.082*
C101.3638 (3)0.5275 (6)0.69487 (9)0.0551 (8)
H10A1.41270.52740.67250.066*
C111.2787 (3)0.3470 (7)0.69684 (11)0.0661 (9)
H11A1.26910.22280.67570.079*
C121.2060 (3)0.3469 (6)0.73013 (10)0.0570 (8)
H12A1.14810.22220.73080.068*
C130.9227 (2)0.5278 (5)0.90462 (9)0.0439 (6)
C140.7603 (2)0.3068 (5)0.93919 (8)0.0404 (6)
C150.7273 (2)0.4852 (5)1.01169 (8)0.0408 (6)
C160.6357 (3)0.3307 (6)1.02337 (10)0.0543 (7)
H16A0.60670.20021.00500.065*
C170.5876 (3)0.3692 (6)1.06191 (10)0.0547 (7)
H17A0.52740.26361.06960.066*
C180.6284 (2)0.5623 (5)1.08869 (9)0.0446 (6)
C190.7191 (2)0.7181 (5)1.07878 (8)0.0449 (6)
H19A0.74670.84851.09740.054*
C200.7686 (2)0.6773 (5)1.04071 (8)0.0396 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0593 (5)0.0552 (5)0.0514 (4)0.0271 (4)0.0085 (3)0.0054 (3)
Cl10.0524 (4)0.0538 (4)0.0498 (4)0.0219 (3)0.0157 (3)0.0058 (3)
O10.0819 (15)0.0638 (14)0.0722 (14)0.0380 (12)0.0450 (12)0.0317 (12)
O20.0952 (18)0.0893 (18)0.0836 (16)0.0164 (13)0.0550 (15)0.0070 (14)
O30.0645 (14)0.0899 (16)0.0605 (13)0.0008 (11)0.0238 (11)0.0129 (12)
N10.0453 (12)0.0477 (13)0.0434 (12)0.0120 (10)0.0128 (10)0.0082 (10)
N20.0458 (13)0.0420 (12)0.0526 (13)0.0151 (10)0.0190 (10)0.0077 (11)
N30.0498 (14)0.0645 (16)0.0577 (14)0.0066 (11)0.0216 (11)0.0093 (11)
C10.0617 (18)0.0461 (17)0.0583 (17)0.0176 (14)0.0241 (14)0.0175 (14)
C20.0548 (17)0.0448 (16)0.0573 (17)0.0188 (13)0.0219 (13)0.0077 (13)
C30.0366 (13)0.0363 (13)0.0390 (13)0.0025 (10)0.0051 (10)0.0045 (11)
C40.0615 (18)0.0478 (17)0.0504 (16)0.0162 (14)0.0201 (13)0.0125 (13)
C50.0573 (17)0.0461 (16)0.0534 (16)0.0211 (13)0.0216 (13)0.0096 (13)
C60.0393 (13)0.0382 (14)0.0410 (13)0.0018 (11)0.0076 (11)0.0008 (11)
C70.0386 (13)0.0429 (14)0.0361 (12)0.0016 (11)0.0049 (10)0.0066 (11)
C80.071 (2)0.061 (2)0.0552 (17)0.0232 (16)0.0239 (15)0.0135 (15)
C90.073 (2)0.075 (2)0.0625 (19)0.0270 (18)0.0315 (16)0.0033 (17)
C100.0517 (17)0.072 (2)0.0442 (15)0.0002 (15)0.0169 (13)0.0032 (15)
C110.070 (2)0.074 (2)0.0601 (18)0.0131 (18)0.0278 (16)0.0217 (17)
C120.0601 (18)0.0551 (18)0.0606 (17)0.0152 (14)0.0240 (14)0.0149 (15)
C130.0427 (14)0.0406 (15)0.0500 (15)0.0056 (12)0.0118 (12)0.0052 (13)
C140.0337 (13)0.0414 (15)0.0452 (14)0.0030 (11)0.0036 (10)0.0034 (12)
C150.0375 (14)0.0404 (14)0.0461 (14)0.0030 (11)0.0113 (11)0.0016 (12)
C160.0545 (17)0.0507 (17)0.0624 (18)0.0163 (14)0.0236 (14)0.0086 (14)
C170.0513 (16)0.0541 (18)0.0645 (18)0.0134 (14)0.0265 (14)0.0032 (15)
C180.0389 (14)0.0507 (16)0.0463 (14)0.0028 (12)0.0133 (11)0.0062 (13)
C190.0425 (14)0.0482 (16)0.0441 (14)0.0021 (12)0.0078 (11)0.0005 (12)
C200.0343 (13)0.0416 (15)0.0439 (13)0.0056 (11)0.0097 (10)0.0027 (11)
Geometric parameters (Å, º) top
S1—C141.653 (3)C5—H5A0.9300
Cl1—C201.733 (3)C6—C131.485 (4)
O1—C131.214 (3)C7—C81.379 (4)
O2—N31.221 (3)C7—C121.380 (4)
O3—N31.221 (3)C8—C91.391 (4)
N1—C131.377 (3)C8—H8A0.9300
N1—C141.397 (3)C9—C101.361 (5)
N1—H1A0.8600C9—H9A0.9300
N2—C141.340 (3)C10—C111.360 (5)
N2—C151.395 (3)C10—H10A0.9300
N2—H2A0.8600C11—C121.384 (4)
N3—C181.470 (4)C11—H11A0.9300
C1—C21.377 (4)C12—H12A0.9300
C1—C61.384 (4)C15—C161.395 (4)
C1—H1B0.9300C15—C201.398 (4)
C2—C31.388 (4)C16—C171.378 (4)
C2—H2B0.9300C16—H16A0.9300
C3—C41.385 (4)C17—C181.363 (4)
C3—C71.488 (3)C17—H17A0.9300
C4—C51.380 (4)C18—C191.373 (4)
C4—H4A0.9300C19—C201.375 (3)
C5—C61.382 (4)C19—H19A0.9300
C13—N1—C14129.3 (2)C8—C9—H9A119.7
C13—N1—H1A115.3C11—C10—C9119.2 (3)
C14—N1—H1A115.3C11—C10—H10A120.4
C14—N2—C15131.7 (2)C9—C10—H10A120.4
C14—N2—H2A114.1C10—C11—C12120.4 (3)
C15—N2—H2A114.1C10—C11—H11A119.8
O2—N3—O3123.9 (3)C12—C11—H11A119.8
O2—N3—C18117.7 (3)C7—C12—C11121.8 (3)
O3—N3—C18118.5 (2)C7—C12—H12A119.1
C2—C1—C6121.5 (3)C11—C12—H12A119.1
C2—C1—H1B119.3O1—C13—N1121.5 (2)
C6—C1—H1B119.3O1—C13—C6121.3 (2)
C1—C2—C3121.7 (2)N1—C13—C6117.2 (2)
C1—C2—H2B119.2N2—C14—N1113.8 (2)
C3—C2—H2B119.2N2—C14—S1129.5 (2)
C4—C3—C2116.2 (2)N1—C14—S1116.71 (19)
C4—C3—C7122.0 (2)C16—C15—N2125.3 (2)
C2—C3—C7121.8 (2)C16—C15—C20117.4 (2)
C5—C4—C3122.5 (3)N2—C15—C20117.3 (2)
C5—C4—H4A118.8C17—C16—C15120.7 (3)
C3—C4—H4A118.8C17—C16—H16A119.6
C4—C5—C6120.7 (2)C15—C16—H16A119.6
C4—C5—H5A119.7C18—C17—C16119.9 (3)
C6—C5—H5A119.7C18—C17—H17A120.1
C5—C6—C1117.4 (2)C16—C17—H17A120.1
C5—C6—C13125.5 (2)C17—C18—C19121.5 (3)
C1—C6—C13117.1 (2)C17—C18—N3120.3 (3)
C8—C7—C12116.7 (2)C19—C18—N3118.2 (3)
C8—C7—C3121.9 (2)C18—C19—C20118.6 (3)
C12—C7—C3121.4 (2)C18—C19—H19A120.7
C7—C8—C9121.4 (3)C20—C19—H19A120.7
C7—C8—H8A119.3C19—C20—C15121.8 (2)
C9—C8—H8A119.3C19—C20—Cl1117.3 (2)
C10—C9—C8120.5 (3)C15—C20—Cl1120.91 (19)
C10—C9—H9A119.7
C6—C1—C2—C30.2 (5)C5—C6—C13—N16.0 (4)
C1—C2—C3—C41.0 (4)C1—C6—C13—N1175.1 (3)
C1—C2—C3—C7179.3 (3)C15—N2—C14—N1178.0 (2)
C2—C3—C4—C50.7 (4)C15—N2—C14—S11.8 (4)
C7—C3—C4—C5179.6 (3)C13—N1—C14—N24.2 (4)
C3—C4—C5—C60.5 (5)C13—N1—C14—S1175.9 (2)
C4—C5—C6—C11.3 (4)C14—N2—C15—C160.8 (5)
C4—C5—C6—C13177.5 (3)C14—N2—C15—C20178.8 (3)
C2—C1—C6—C50.9 (5)N2—C15—C16—C17179.0 (3)
C2—C1—C6—C13178.0 (3)C20—C15—C16—C170.6 (4)
C4—C3—C7—C8179.0 (3)C15—C16—C17—C181.0 (5)
C2—C3—C7—C81.3 (4)C16—C17—C18—C191.6 (5)
C4—C3—C7—C120.9 (4)C16—C17—C18—N3179.6 (3)
C2—C3—C7—C12178.8 (3)O2—N3—C18—C171.9 (4)
C12—C7—C8—C90.5 (5)O3—N3—C18—C17177.8 (3)
C3—C7—C8—C9179.7 (3)O2—N3—C18—C19176.9 (3)
C7—C8—C9—C100.8 (6)O3—N3—C18—C193.3 (4)
C8—C9—C10—C110.6 (5)C17—C18—C19—C200.5 (4)
C9—C10—C11—C120.1 (5)N3—C18—C19—C20179.3 (2)
C8—C7—C12—C110.0 (5)C18—C19—C20—C151.2 (4)
C3—C7—C12—C11179.8 (3)C18—C19—C20—Cl1177.9 (2)
C10—C11—C12—C70.2 (5)C16—C15—C20—C191.7 (4)
C14—N1—C13—O14.7 (5)N2—C15—C20—C19177.9 (2)
C14—N1—C13—C6173.9 (2)C16—C15—C20—Cl1177.3 (2)
C5—C6—C13—O1172.6 (3)N2—C15—C20—Cl13.1 (3)
C1—C6—C13—O16.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.432.938 (2)118
N2—H2A···O10.861.872.608 (3)143
C16—H16A···S10.932.533.208 (3)130
C10—H10A···O3i0.932.573.354 (4)142
C17—H17A···S1ii0.932.773.673 (3)165
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H14ClN3O3S
Mr411.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.889 (2), 5.4502 (10), 30.532 (5)
β (°) 99.202 (4)
V3)1788.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.35 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.885, 0.972
No. of measured, independent and
observed [I > 2/s(I)] reflections
9537, 3154, 2704
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.16
No. of reflections3154
No. of parameters253
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.432.938 (2)118
N2—H2A···O10.861.872.608 (3)143
C16—H16A···S10.932.533.208 (3)130
C10—H10A···O3i0.932.573.354 (4)142
C17—H17A···S1ii0.932.773.673 (3)165
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x+1, y, z+2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia, Universiti Kebangsaan Malaysia and Universiti Malaysia Terengganu for research grant 59166.

References

First citationAllen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Wong, S. T. & Yamin, B. M. (2011). Acta Cryst. E67, o2483.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1485
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds