organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1418-o1419

5,11,17,23,29,35-Hexa-tert-butyl-37,38,39,40,41,42-hexa­kis­(eth­­oxy­carbonyl­meth­­oxy)calix[6]arene aceto­nitrile disolvate

aInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, bInstitute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic, cDepartment of Inorganic Chemistry, Charles University in Prague, Faculty of Natural Sciences, Hlavova 2030/8, Praha, Czech Republic, 128 40, Czech Republic, and dFaculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz

(Received 28 March 2012; accepted 11 April 2012; online 18 April 2012)

In the title compound, C90H120O18·2CH3CN, the calix[6]arene has a 1,2,3-alternate conformation and possesses inversion symmetry. It crystallizes as an acetonitrile disolvate, with a half-mol­ecule of calix[6]arene and one mol­ecule of solvent in the asymmetric unit. In the crystal, the two solvent mol­ecules are enclosed in voids between the calix[6]arene mol­ecules. They form weak C—H⋯O hydrogen bonds involving an O atom of the lower rim substituent. The cavity of the calix[6]arene itself is enclosed by two opposite phenol rings, which are turned into the cavity due to the presence of a C—H⋯π inter­action. The calix[6]arene mol­ecule exhibits disorder of one substituent on its lower rim [occupancy ratio 0.897 (3):0.103 (3)].

Related literature

For general information about calixarenes, see: Gutsche (2008[Gutsche, C. D. (2008). Monographs in Supramolecular Chemistry, 2nd ed. Cambridge: The Royal Society of Chemistry.]). For their applications in coordination chemistry, see: Homden & Redshaw (2008[Homden, D. M. & Redshaw, C. (2008). Chem. Rev. 108, 5086-5130.]); Gibson et al. (1998[Gibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (1998). J. Chem. Soc. Chem. Commun. 18, 1969-1970.]), in supra­molecular chemistry, see: Atwood et al. (2002[Atwood, J. L., Barbour, L. J., Dalgarno, S., Raston, C. L. & Webb, H. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4351-4356.]) and in polymerization, see: Ling et al. (2003[Ling, J., Shen, Z. Q. & Zhu, W. P. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 1390-1399.]). For the synthesis of the title compound, see: McKervey et al. (1985[McKervey, M. A., Seward, E. M., Ferguson, G., Ruhl, B. & Harris, S. J. (1985). J. Chem. Soc. Chem. Commun. pp. 388-90.]).

[Scheme 1]

Experimental

Crystal data
  • C90H120O18·2C2H3N

  • Mr = 1571.97

  • Triclinic, [P \overline 1]

  • a = 12.6190 (2) Å

  • b = 13.1500 (3) Å

  • c = 14.8990 (4) Å

  • α = 75.9037 (11)°

  • β = 67.7646 (11)°

  • γ = 74.5815 (19)°

  • V = 2177.67 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.3 × 0.3 × 0.25 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 19018 measured reflections

  • 9990 independent reflections

  • 7277 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.183

  • S = 1.03

  • 9990 reflections

  • 538 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1C–C6C ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3E⋯O1C 0.96 2.47 3.250 (4) 139
C7C—H7C2⋯O3B 0.97 2.38 3.312 (3) 160
C12B—H12D⋯O2A 0.97 2.57 3.526 (3) 169
C15B—H15G⋯O3Ai 0.96 2.48 3.398 160
C5C—H5C⋯O1Aii 0.93 2.44 3.190 (2) 138
C11C—H11G⋯O1Bii 0.96 2.56 3.477 (3) 159
C10C—H10ICg1ii 0.96 2.73 3.588 (3) 148
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+2, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: COLLECT and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Calixarenes (Gutsche, 2008) have received considerable interest over the past four decades for their ability to entrap guest molecules. They have found applications in coordination (Homden & Redshaw, 2008; Gibson et al., 1998) and supramolecular chemistry (Atwood et al., 2002). They have also been investigated for their possible industrial applications such as, the catalysis of polymerization (Ling et al., 2003), or metal ion receptors (Homden & Redshaw, 2008).

The title compound crystallizes as a diacetonotrile solvate, with half a molecule of calix[6]arene and one molecule of acetonitrile in the asymmetric unit (Fig. 1). The molecular structure of the title compound is illustrated in Fig. 2. The acetonitrile molecule is bound to the calix[6]arene via a weak C-H···O hydrogen bond involving an O atom of a lower rim substituent (Table 1). Due to the presence of the oxygen atoms, the lower rim substituents are suitable acceptors of weak C-H···O hydrogen bonds (intra- and intermolecular) from surrounding bridging methylene (C7) and methyl (C15) groups (Table 1). The shape of the calix[6]arene cavity is influenced by the presence of C—H···π interactions between the methyl group of the tert-butyl group and the aromatic ring C1c-C6c (Table 1 and Fig. 3).

The lower-rim substituent atoms (O3a,C14a,C15a) of ring C1a-C6a, are disordered over two position with an occupancy ratio of 0.897 (3) : 0.103 (3).

Related literature top

For general information about calixarenes, see: Gutsche (2008). For their applications in coordination chemistry, see: Homden & Redshaw (2008); Gibson et al. (1998), in supramolecular chemistry, see: Atwood et al. (2002) and in polymerization, see: Ling et al. (2003). For the synthesis of the title compound, see: McKervey et al. (1985).

Experimental top

The title compound was prepared following a previously published procedure (McKervey et al. 1985).

Refinement top

Atoms (O3a,C14a,C15a), of the ethoxycarbonylmethoxy substituent on ring C1a-C6a, are disordered over two positions with an occupancy ratio of 0.897 (3) : 0.103 (3). Their positions were found from difference electron density maps. The disordered fragments were placed in appropriate positions, and all distances between neighbouring atoms were restrained, as well as the bond angles, to standard values. Site occupancies were refined for the different parts with the same thermal parameters for the same atoms in the various fragments. In the final cycles of refinement, the C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT (Hooft, 1998); data reduction: COLLECT and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound with atom numbering. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular structure of the title compound [only the hetero-atoms have been labelled; H atoms have been omitted for clarity; symmetry code: (i) -x+1, -y+2, -z].
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound. The C-H···O hydrogen bonds are shown as dashed cyan lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
5,11,17,23,29,35-Hexa-tert-butyl-37,38,39,40,41,42- hexakis(ethoxycarbonylmethoxy)calix[6]arene acetonitrile disolvate top
Crystal data top
C90H120O18·2C2H3NZ = 1
Mr = 1571.97F(000) = 848
Triclinic, P1Dx = 1.199 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.6190 (2) ÅCell parameters from 4823 reflections
b = 13.1500 (3) Åθ = 1–22°
c = 14.8990 (4) ŵ = 0.08 mm1
α = 75.9037 (11)°T = 150 K
β = 67.7646 (11)°Prism, colourless
γ = 74.5815 (19)°0.3 × 0.3 × 0.25 mm
V = 2177.67 (9) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
7277 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 1.5°
Detector resolution: 9.091 pixels mm-1h = 1616
ϕ and ω scansk = 1717
19018 measured reflectionsl = 1919
9990 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.089P)2 + 1.397P]
where P = (Fo2 + 2Fc2)/3
9990 reflections(Δ/σ)max < 0.001
538 parametersΔρmax = 0.43 e Å3
12 restraintsΔρmin = 0.32 e Å3
Crystal data top
C90H120O18·2C2H3Nγ = 74.5815 (19)°
Mr = 1571.97V = 2177.67 (9) Å3
Triclinic, P1Z = 1
a = 12.6190 (2) ÅMo Kα radiation
b = 13.1500 (3) ŵ = 0.08 mm1
c = 14.8990 (4) ÅT = 150 K
α = 75.9037 (11)°0.3 × 0.3 × 0.25 mm
β = 67.7646 (11)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
7277 reflections with I > 2σ(I)
19018 measured reflectionsRint = 0.025
9990 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06112 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
9990 reflectionsΔρmin = 0.32 e Å3
538 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The positions of disorder atoms were found from the electron density maps. Disodered fragments were then placed in appropriate positions, and all distances between neighbouring atoms were restrained as well as angles. Site occupancies were refined for the different parts with the same thermal parameters for the same atoms in various fragments. The final partial occupancies were found 0.896 (3). At the end of refinement, hydrogen atoms were placed in calculated positions with the thermal parameters Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.25078 (16)1.17003 (15)0.27628 (15)0.0255 (4)
C2A0.21935 (16)1.23763 (15)0.19789 (14)0.0253 (4)
C3A0.11776 (16)1.22947 (16)0.18578 (15)0.0275 (4)
H3A0.09321.27750.13700.033*
C4A0.05112 (16)1.15237 (16)0.24363 (15)0.0274 (4)
C5A0.08946 (16)1.08385 (16)0.31747 (15)0.0274 (4)
H5A0.04831.03040.35590.033*
C6A0.18736 (16)1.09210 (15)0.33630 (15)0.0265 (4)
C7A0.29444 (16)1.31534 (15)0.12584 (15)0.0259 (4)
H7A10.32641.34480.16150.031*
H7A20.24531.37400.09760.031*
C8A0.06086 (17)1.14624 (18)0.22848 (16)0.0340 (5)
C9A0.1624 (2)1.2230 (3)0.2855 (2)0.0663 (9)
H9A10.14771.29440.26240.099*
H9A20.17141.20400.35410.099*
H9A30.23241.21920.27630.099*
C10A0.0513 (2)1.1786 (3)0.1204 (2)0.0524 (7)
H10A0.11961.16850.11240.079*
H10B0.01661.13510.08150.079*
H10C0.04471.25240.09940.079*
C11A0.0862 (3)1.0331 (2)0.2613 (3)0.0653 (9)
H11A0.10081.01280.33060.098*
H11B0.02030.98430.22680.098*
H11C0.15361.03100.24690.098*
C12A0.32725 (17)1.25402 (17)0.35525 (16)0.0316 (4)
H12A0.27541.23090.42020.038*
H12B0.29031.32370.32960.038*
C13A0.44232 (19)1.26028 (18)0.36074 (18)0.0378 (5)
O3A0.42398 (15)1.31975 (17)0.42880 (16)0.0397 (5)0.897 (3)
C14A0.5263 (2)1.3287 (2)0.4494 (2)0.0450 (7)0.897 (3)
H14A0.58691.26580.43500.054*0.897 (3)
H14B0.50451.33280.51840.054*0.897 (3)
C15A0.5715 (3)1.4255 (3)0.3886 (3)0.0607 (9)0.897 (3)
H15A0.60101.41780.32050.091*0.897 (3)
H15B0.63321.43420.40710.091*0.897 (3)
H15C0.50971.48700.39870.091*0.897 (3)
O3E0.4240 (13)1.3615 (12)0.3789 (15)0.0397 (5)0.103 (3)
C14E0.5250 (18)1.385 (2)0.3852 (18)0.0450 (7)0.103 (3)
H14C0.55851.43350.32670.054*0.103 (3)
H14D0.58261.31930.38650.054*0.103 (3)
C15E0.501 (3)1.433 (2)0.472 (2)0.0607 (9)0.103 (3)
H15D0.45861.50480.46410.091*0.103 (3)
H15E0.57281.43240.48000.091*0.103 (3)
H15F0.45441.39180.52950.091*0.103 (3)
O1A0.34953 (11)1.17950 (11)0.29228 (10)0.0280 (3)
O2A0.53644 (14)1.21755 (15)0.31260 (15)0.0526 (5)
C1B0.37351 (16)0.86213 (16)0.34163 (14)0.0264 (4)
C2B0.26097 (16)0.90142 (15)0.40260 (14)0.0262 (4)
C3B0.18043 (17)0.83401 (16)0.44048 (15)0.0281 (4)
H3B0.10680.85800.48340.034*
C4B0.20556 (17)0.73175 (16)0.41665 (15)0.0289 (4)
C5B0.31505 (17)0.69925 (16)0.35082 (15)0.0288 (4)
H5B0.33250.63290.33140.035*
C6B0.40056 (16)0.76258 (16)0.31235 (14)0.0266 (4)
C7B0.22152 (17)1.01623 (16)0.42047 (15)0.0287 (4)
H7B10.28411.03850.42890.034*
H7B20.15521.02070.48080.034*
C8B0.11157 (18)0.66241 (17)0.45974 (16)0.0326 (5)
C9B0.0066 (2)0.7205 (2)0.4275 (2)0.0498 (6)
H9B10.02400.78790.45080.075*
H9B20.05250.67780.45430.075*
H9B30.03050.73240.35710.075*
C10B0.0715 (2)0.6428 (2)0.57235 (19)0.0491 (6)
H10D0.13700.60720.59350.074*
H10E0.01330.59900.59800.074*
H10F0.03900.71000.59600.074*
C11B0.1572 (2)0.5534 (2)0.4241 (2)0.0488 (6)
H11D0.18140.56420.35370.073*
H11E0.09630.51250.45140.073*
H11F0.22240.51540.44490.073*
C12B0.49621 (18)0.95092 (18)0.37165 (17)0.0332 (5)
H12C0.43930.93740.43650.040*
H12D0.49631.02690.35640.040*
C13B0.61557 (18)0.89186 (17)0.37561 (16)0.0327 (5)
C14B0.7921 (2)0.7746 (2)0.3031 (2)0.0463 (6)
H14E0.82080.80640.33950.056*
H14F0.84500.77870.23580.056*
C15B0.7866 (2)0.6599 (2)0.3482 (2)0.0542 (7)
H15G0.74240.65570.41700.081*
H15H0.86420.61930.33970.081*
H15I0.74970.63140.31670.081*
O1B0.45860 (12)0.92449 (11)0.30288 (10)0.0297 (3)
O2B0.65196 (15)0.90149 (16)0.43608 (14)0.0545 (5)
O3B0.67560 (13)0.83237 (13)0.30542 (13)0.0426 (4)
C1C0.60359 (16)0.70774 (14)0.05452 (15)0.0247 (4)
C2C0.51242 (16)0.75340 (15)0.13118 (15)0.0256 (4)
C3C0.42030 (16)0.82565 (15)0.10770 (15)0.0269 (4)
H3C0.35870.85690.15750.032*
C4C0.41697 (16)0.85299 (15)0.01170 (15)0.0253 (4)
C5C0.51041 (16)0.80732 (15)0.06241 (15)0.0256 (4)
H5C0.51000.82590.12660.031*
C6C0.60533 (15)0.73392 (14)0.04272 (14)0.0243 (4)
C7C0.51460 (17)0.72522 (17)0.23651 (15)0.0299 (4)
H7C10.53660.64820.25230.036*
H7C20.57410.75660.23990.036*
C8C0.31113 (16)0.93202 (16)0.00769 (15)0.0282 (4)
C9C0.20150 (19)0.8836 (2)0.0495 (2)0.0426 (6)
H9C10.21150.81690.02900.064*
H9C20.13510.93190.03680.064*
H9C30.18940.87160.11860.064*
C10C0.2975 (2)1.03574 (18)0.0273 (2)0.0441 (6)
H10G0.28601.02160.09640.066*
H10H0.23141.08570.01560.066*
H10I0.36661.06530.00790.066*
C11C0.3238 (2)0.9565 (2)0.11688 (18)0.0444 (6)
H11G0.39150.98760.15390.067*
H11H0.25561.00570.12560.067*
H11I0.33200.89150.13950.067*
C12C0.78085 (16)0.67061 (16)0.08537 (16)0.0298 (4)
H12E0.74740.71190.13880.036*
H12F0.81330.71750.02510.036*
C13C0.87500 (19)0.58009 (18)0.10460 (17)0.0360 (5)
C14C1.0527 (2)0.5423 (2)0.1371 (2)0.0515 (7)
H14G1.09900.50930.07920.062*
H14H1.02700.48680.19190.062*
C15C1.1226 (2)0.6006 (3)0.1588 (3)0.0650 (9)
H15J1.14690.65580.10450.097*
H15K1.19010.55190.16940.097*
H15L1.07640.63200.21680.097*
O1C0.69366 (11)0.62850 (10)0.07719 (10)0.0277 (3)
O2C0.95249 (13)0.61902 (12)0.12039 (13)0.0392 (4)
O3C0.87997 (18)0.48727 (14)0.10612 (19)0.0659 (6)
N10.4238 (3)0.4887 (2)0.1912 (2)0.0724 (8)
C20.5136 (3)0.4516 (2)0.1443 (3)0.0590 (7)
C30.6277 (3)0.4032 (3)0.0847 (3)0.0849 (12)
H3D0.64790.33080.11480.127*
H3E0.68420.44280.07930.127*
H3F0.62670.40370.02050.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0210 (9)0.0266 (10)0.0316 (10)0.0015 (7)0.0105 (8)0.0097 (8)
C2A0.0220 (9)0.0232 (9)0.0306 (10)0.0004 (7)0.0091 (8)0.0088 (8)
C3A0.0251 (9)0.0286 (10)0.0287 (10)0.0007 (7)0.0120 (8)0.0059 (8)
C4A0.0200 (9)0.0319 (10)0.0311 (10)0.0008 (7)0.0091 (8)0.0102 (8)
C5A0.0237 (9)0.0283 (10)0.0304 (10)0.0059 (7)0.0105 (8)0.0019 (8)
C6A0.0244 (9)0.0266 (10)0.0295 (10)0.0009 (7)0.0106 (8)0.0080 (8)
C7A0.0246 (9)0.0220 (9)0.0311 (10)0.0013 (7)0.0114 (8)0.0045 (8)
C8A0.0242 (9)0.0440 (12)0.0383 (12)0.0073 (9)0.0145 (9)0.0072 (10)
C9A0.0277 (12)0.106 (3)0.075 (2)0.0032 (14)0.0202 (13)0.0463 (19)
C10A0.0420 (13)0.081 (2)0.0473 (15)0.0239 (13)0.0255 (12)0.0032 (13)
C11A0.0664 (18)0.0657 (19)0.087 (2)0.0374 (15)0.0521 (17)0.0155 (16)
C12A0.0291 (10)0.0324 (11)0.0374 (11)0.0040 (8)0.0124 (9)0.0133 (9)
C13A0.0332 (11)0.0364 (12)0.0483 (14)0.0067 (9)0.0144 (10)0.0134 (10)
O3A0.0367 (9)0.0467 (12)0.0478 (12)0.0112 (8)0.0189 (9)0.0178 (10)
C14A0.0480 (15)0.0444 (15)0.0549 (18)0.0106 (12)0.0273 (14)0.0115 (13)
C15A0.0574 (19)0.0566 (19)0.080 (2)0.0189 (16)0.0309 (17)0.0095 (17)
O3E0.0367 (9)0.0467 (12)0.0478 (12)0.0112 (8)0.0189 (9)0.0178 (10)
C14E0.0480 (15)0.0444 (15)0.0549 (18)0.0106 (12)0.0273 (14)0.0115 (13)
C15E0.0574 (19)0.0566 (19)0.080 (2)0.0189 (16)0.0309 (17)0.0095 (17)
O1A0.0241 (6)0.0296 (7)0.0350 (8)0.0031 (5)0.0138 (6)0.0097 (6)
O2A0.0294 (8)0.0567 (11)0.0805 (14)0.0052 (8)0.0154 (8)0.0348 (10)
C1B0.0228 (9)0.0307 (10)0.0249 (10)0.0057 (7)0.0105 (7)0.0016 (8)
C2B0.0270 (9)0.0284 (10)0.0248 (10)0.0020 (7)0.0128 (8)0.0041 (8)
C3B0.0237 (9)0.0322 (10)0.0269 (10)0.0034 (8)0.0073 (8)0.0062 (8)
C4B0.0278 (10)0.0309 (10)0.0296 (10)0.0062 (8)0.0124 (8)0.0025 (8)
C5B0.0303 (10)0.0263 (10)0.0320 (11)0.0025 (8)0.0141 (8)0.0059 (8)
C6B0.0253 (9)0.0303 (10)0.0249 (10)0.0017 (8)0.0131 (8)0.0023 (8)
C7B0.0268 (9)0.0293 (10)0.0306 (10)0.0041 (8)0.0112 (8)0.0049 (8)
C8B0.0309 (10)0.0308 (11)0.0382 (12)0.0092 (8)0.0109 (9)0.0063 (9)
C9B0.0386 (13)0.0531 (15)0.0652 (17)0.0135 (11)0.0218 (12)0.0107 (13)
C10B0.0524 (15)0.0524 (15)0.0450 (14)0.0246 (12)0.0117 (12)0.0038 (12)
C11B0.0434 (13)0.0414 (13)0.0622 (17)0.0149 (11)0.0113 (12)0.0126 (12)
C12B0.0305 (10)0.0350 (11)0.0389 (12)0.0049 (8)0.0163 (9)0.0083 (9)
C13B0.0321 (10)0.0320 (11)0.0375 (12)0.0078 (8)0.0150 (9)0.0051 (9)
C14B0.0313 (11)0.0516 (15)0.0641 (17)0.0044 (10)0.0266 (11)0.0201 (13)
C15B0.0471 (14)0.0595 (17)0.0514 (16)0.0018 (12)0.0214 (12)0.0060 (13)
O1B0.0259 (7)0.0327 (7)0.0330 (8)0.0084 (6)0.0114 (6)0.0041 (6)
O2B0.0456 (10)0.0742 (13)0.0574 (11)0.0042 (9)0.0312 (9)0.0295 (10)
O3B0.0321 (8)0.0462 (9)0.0571 (11)0.0069 (7)0.0249 (8)0.0215 (8)
C1C0.0214 (8)0.0183 (9)0.0337 (10)0.0028 (7)0.0110 (8)0.0012 (7)
C2C0.0231 (9)0.0235 (9)0.0297 (10)0.0044 (7)0.0096 (8)0.0023 (8)
C3C0.0216 (9)0.0260 (10)0.0301 (10)0.0027 (7)0.0065 (8)0.0047 (8)
C4C0.0213 (8)0.0218 (9)0.0330 (10)0.0037 (7)0.0114 (8)0.0013 (8)
C5C0.0242 (9)0.0246 (9)0.0293 (10)0.0055 (7)0.0111 (8)0.0025 (8)
C6C0.0209 (8)0.0203 (9)0.0324 (10)0.0056 (7)0.0090 (7)0.0036 (8)
C7C0.0250 (9)0.0328 (11)0.0310 (11)0.0003 (8)0.0131 (8)0.0034 (8)
C8C0.0208 (9)0.0271 (10)0.0344 (11)0.0009 (7)0.0107 (8)0.0027 (8)
C9C0.0269 (10)0.0430 (13)0.0560 (15)0.0083 (9)0.0160 (10)0.0004 (11)
C10C0.0409 (12)0.0277 (11)0.0687 (17)0.0028 (9)0.0292 (12)0.0093 (11)
C11C0.0340 (11)0.0512 (14)0.0427 (13)0.0061 (10)0.0201 (10)0.0018 (11)
C12C0.0239 (9)0.0281 (10)0.0352 (11)0.0013 (8)0.0104 (8)0.0042 (8)
C13C0.0333 (11)0.0333 (12)0.0423 (13)0.0039 (9)0.0186 (10)0.0094 (9)
C14C0.0406 (13)0.0481 (15)0.0752 (19)0.0128 (11)0.0369 (13)0.0217 (13)
C15C0.0427 (15)0.0656 (19)0.100 (3)0.0083 (13)0.0380 (16)0.0343 (18)
O1C0.0229 (6)0.0230 (7)0.0355 (8)0.0005 (5)0.0131 (6)0.0019 (6)
O2C0.0311 (8)0.0374 (8)0.0541 (10)0.0072 (6)0.0238 (7)0.0158 (7)
O3C0.0627 (12)0.0335 (10)0.1216 (19)0.0093 (8)0.0620 (13)0.0182 (11)
N10.0620 (17)0.0630 (16)0.097 (2)0.0198 (13)0.0187 (16)0.0259 (16)
C20.0565 (17)0.0495 (16)0.077 (2)0.0222 (14)0.0171 (16)0.0163 (15)
C30.068 (2)0.070 (2)0.111 (3)0.0290 (18)0.003 (2)0.042 (2)
Geometric parameters (Å, º) top
C1A—C6A1.392 (3)C9B—H9B20.9600
C1A—O1A1.395 (2)C9B—H9B30.9600
C1A—C2A1.403 (3)C10B—H10D0.9600
C2A—C3A1.395 (3)C10B—H10E0.9600
C2A—C7A1.518 (3)C10B—H10F0.9600
C3A—C4A1.399 (3)C11B—H11D0.9600
C3A—H3A0.9300C11B—H11E0.9600
C4A—C5A1.394 (3)C11B—H11F0.9600
C4A—C8A1.538 (3)C12B—O1B1.423 (2)
C5A—C6A1.402 (3)C12B—C13B1.516 (3)
C5A—H5A0.9300C12B—H12C0.9700
C6A—C7B1.525 (3)C12B—H12D0.9700
C7A—C6Ci1.524 (3)C13B—O2B1.199 (3)
C7A—H7A10.9700C13B—O3B1.328 (3)
C7A—H7A20.9700C14B—O3B1.456 (3)
C8A—C9A1.512 (3)C14B—C15B1.504 (4)
C8A—C10A1.528 (3)C14B—H14E0.9700
C8A—C11A1.529 (4)C14B—H14F0.9700
C9A—H9A10.9600C15B—H15G0.9600
C9A—H9A20.9600C15B—H15H0.9600
C9A—H9A30.9600C15B—H15I0.9600
C10A—H10A0.9600C1C—C6C1.398 (3)
C10A—H10B0.9600C1C—C2C1.400 (3)
C10A—H10C0.9600C1C—O1C1.408 (2)
C11A—H11A0.9600C2C—C3C1.391 (3)
C11A—H11B0.9600C2C—C7C1.531 (3)
C11A—H11C0.9600C3C—C4C1.401 (3)
C12A—O1A1.422 (2)C3C—H3C0.9300
C12A—C13A1.510 (3)C4C—C5C1.390 (3)
C12A—H12A0.9700C4C—C8C1.535 (3)
C12A—H12B0.9700C5C—C6C1.402 (3)
C13A—O2A1.199 (3)C5C—H5C0.9300
C13A—O3A1.344 (3)C6C—C7Ai1.524 (3)
C13A—O3E1.365 (13)C7C—H7C10.9700
O3A—C14A1.474 (3)C7C—H7C20.9700
C14A—C15A1.483 (4)C8C—C10C1.522 (3)
C14A—H14A0.9700C8C—C11C1.533 (3)
C14A—H14B0.9700C8C—C9C1.536 (3)
C15A—H15A0.9600C9C—H9C10.9600
C15A—H15B0.9600C9C—H9C20.9600
C15A—H15C0.9600C9C—H9C30.9600
O3E—C14E1.428 (17)C10C—H10G0.9600
C14E—C15E1.471 (18)C10C—H10H0.9600
C14E—H14C0.9700C10C—H10I0.9600
C14E—H14D0.9700C11C—H11G0.9600
C15E—H15D0.9600C11C—H11H0.9600
C15E—H15E0.9600C11C—H11I0.9600
C15E—H15F0.9600C12C—O1C1.411 (2)
C1B—O1B1.388 (2)C12C—C13C1.500 (3)
C1B—C6B1.396 (3)C12C—H12E0.9700
C1B—C2B1.404 (3)C12C—H12F0.9700
C2B—C3B1.392 (3)C13C—O3C1.201 (3)
C2B—C7B1.515 (3)C13C—O2C1.331 (3)
C3B—C4B1.398 (3)C14C—O2C1.455 (3)
C3B—H3B0.9300C14C—C15C1.471 (4)
C4B—C5B1.385 (3)C14C—H14G0.9700
C4B—C8B1.538 (3)C14C—H14H0.9700
C5B—C6B1.401 (3)C15C—H15J0.9600
C5B—H5B0.9300C15C—H15K0.9600
C6B—C7C1.501 (3)C15C—H15L0.9600
C7B—H7B10.9700N1—C21.133 (4)
C7B—H7B20.9700C2—C31.444 (5)
C8B—C9B1.528 (3)C3—H3D0.9600
C8B—C10B1.534 (3)C3—H3E0.9600
C8B—C11B1.540 (3)C3—H3F0.9600
C9B—H9B10.9600
C6A—C1A—O1A119.63 (17)H9B1—C9B—H9B3109.5
C6A—C1A—C2A121.28 (17)H9B2—C9B—H9B3109.5
O1A—C1A—C2A119.06 (17)C8B—C10B—H10D109.5
C3A—C2A—C1A117.95 (18)C8B—C10B—H10E109.5
C3A—C2A—C7A120.25 (18)H10D—C10B—H10E109.5
C1A—C2A—C7A121.77 (16)C8B—C10B—H10F109.5
C2A—C3A—C4A122.99 (18)H10D—C10B—H10F109.5
C2A—C3A—H3A118.5H10E—C10B—H10F109.5
C4A—C3A—H3A118.5C8B—C11B—H11D109.5
C5A—C4A—C3A116.58 (17)C8B—C11B—H11E109.5
C5A—C4A—C8A121.89 (18)H11D—C11B—H11E109.5
C3A—C4A—C8A121.50 (18)C8B—C11B—H11F109.5
C4A—C5A—C6A122.83 (18)H11D—C11B—H11F109.5
C4A—C5A—H5A118.6H11E—C11B—H11F109.5
C6A—C5A—H5A118.6O1B—C12B—C13B116.20 (18)
C1A—C6A—C5A118.19 (18)O1B—C12B—H12C108.2
C1A—C6A—C7B122.14 (17)C13B—C12B—H12C108.2
C5A—C6A—C7B119.67 (17)O1B—C12B—H12D108.2
C2A—C7A—C6Ci114.23 (15)C13B—C12B—H12D108.2
C2A—C7A—H7A1108.7H12C—C12B—H12D107.4
C6Ci—C7A—H7A1108.7O2B—C13B—O3B124.0 (2)
C2A—C7A—H7A2108.7O2B—C13B—C12B121.8 (2)
C6Ci—C7A—H7A2108.7O3B—C13B—C12B114.18 (18)
H7A1—C7A—H7A2107.6O3B—C14B—C15B108.9 (2)
C9A—C8A—C10A107.5 (2)O3B—C14B—H14E109.9
C9A—C8A—C11A109.8 (2)C15B—C14B—H14E109.9
C10A—C8A—C11A107.2 (2)O3B—C14B—H14F109.9
C9A—C8A—C4A109.27 (18)C15B—C14B—H14F109.9
C10A—C8A—C4A111.33 (18)H14E—C14B—H14F108.3
C11A—C8A—C4A111.63 (19)C14B—C15B—H15G109.5
C8A—C9A—H9A1109.5C14B—C15B—H15H109.5
C8A—C9A—H9A2109.5H15G—C15B—H15H109.5
H9A1—C9A—H9A2109.5C14B—C15B—H15I109.5
C8A—C9A—H9A3109.5H15G—C15B—H15I109.5
H9A1—C9A—H9A3109.5H15H—C15B—H15I109.5
H9A2—C9A—H9A3109.5C1B—O1B—C12B116.27 (16)
C8A—C10A—H10A109.5C13B—O3B—C14B117.53 (18)
C8A—C10A—H10B109.5C6C—C1C—C2C122.47 (17)
H10A—C10A—H10B109.5C6C—C1C—O1C118.85 (17)
C8A—C10A—H10C109.5C2C—C1C—O1C118.60 (17)
H10A—C10A—H10C109.5C3C—C2C—C1C117.35 (18)
H10B—C10A—H10C109.5C3C—C2C—C7C121.44 (17)
C8A—C11A—H11A109.5C1C—C2C—C7C121.21 (17)
C8A—C11A—H11B109.5C2C—C3C—C4C122.32 (18)
H11A—C11A—H11B109.5C2C—C3C—H3C118.8
C8A—C11A—H11C109.5C4C—C3C—H3C118.8
H11A—C11A—H11C109.5C5C—C4C—C3C118.37 (17)
H11B—C11A—H11C109.5C5C—C4C—C8C122.59 (18)
O1A—C12A—C13A108.09 (16)C3C—C4C—C8C119.04 (17)
O1A—C12A—H12A110.1C4C—C5C—C6C121.61 (18)
C13A—C12A—H12A110.1C4C—C5C—H5C119.2
O1A—C12A—H12B110.1C6C—C5C—H5C119.2
C13A—C12A—H12B110.1C1C—C6C—C5C117.86 (17)
H12A—C12A—H12B108.4C1C—C6C—C7Ai122.08 (16)
O2A—C13A—O3A124.7 (2)C5C—C6C—C7Ai120.06 (17)
O2A—C13A—O3E121.1 (7)C6B—C7C—C2C114.14 (16)
O3A—C13A—O3E34.8 (8)C6B—C7C—H7C1108.7
O2A—C13A—C12A125.3 (2)C2C—C7C—H7C1108.7
O3A—C13A—C12A110.00 (18)C6B—C7C—H7C2108.7
O3E—C13A—C12A103.4 (6)C2C—C7C—H7C2108.7
C13A—O3A—C14A117.7 (2)H7C1—C7C—H7C2107.6
O3A—C14A—C15A110.2 (2)C10C—C8C—C11C108.91 (19)
O3A—C14A—H14A109.6C10C—C8C—C4C108.87 (16)
C15A—C14A—H14A109.6C11C—C8C—C4C112.28 (17)
O3A—C14A—H14B109.6C10C—C8C—C9C109.64 (19)
C15A—C14A—H14B109.6C11C—C8C—C9C108.20 (18)
H14A—C14A—H14B108.1C4C—C8C—C9C108.92 (17)
C13A—O3E—C14E112.4 (14)C8C—C9C—H9C1109.5
O3E—C14E—C15E113.4 (18)C8C—C9C—H9C2109.5
O3E—C14E—H14C108.9H9C1—C9C—H9C2109.5
C15E—C14E—H14C108.9C8C—C9C—H9C3109.5
O3E—C14E—H14D108.9H9C1—C9C—H9C3109.5
C15E—C14E—H14D108.9H9C2—C9C—H9C3109.5
H14C—C14E—H14D107.7C8C—C10C—H10G109.5
C14E—C15E—H15D109.5C8C—C10C—H10H109.5
C14E—C15E—H15E109.5H10G—C10C—H10H109.5
H15D—C15E—H15E109.5C8C—C10C—H10I109.5
C14E—C15E—H15F109.5H10G—C10C—H10I109.5
H15D—C15E—H15F109.5H10H—C10C—H10I109.5
H15E—C15E—H15F109.5C8C—C11C—H11G109.5
C1A—O1A—C12A114.19 (14)C8C—C11C—H11H109.5
O1B—C1B—C6B117.99 (17)H11G—C11C—H11H109.5
O1B—C1B—C2B120.86 (18)C8C—C11C—H11I109.5
C6B—C1B—C2B120.99 (17)H11G—C11C—H11I109.5
C3B—C2B—C1B117.93 (18)H11H—C11C—H11I109.5
C3B—C2B—C7B119.28 (17)O1C—C12C—C13C108.95 (16)
C1B—C2B—C7B122.54 (18)O1C—C12C—H12E109.9
C2B—C3B—C4B122.77 (18)C13C—C12C—H12E109.9
C2B—C3B—H3B118.6O1C—C12C—H12F109.9
C4B—C3B—H3B118.6C13C—C12C—H12F109.9
C5B—C4B—C3B117.22 (18)H12E—C12C—H12F108.3
C5B—C4B—C8B122.75 (18)O3C—C13C—O2C125.2 (2)
C3B—C4B—C8B119.98 (18)O3C—C13C—C12C125.8 (2)
C4B—C5B—C6B122.44 (19)O2C—C13C—C12C109.03 (18)
C4B—C5B—H5B118.8O2C—C14C—C15C107.7 (2)
C6B—C5B—H5B118.8O2C—C14C—H14G110.2
C1B—C6B—C5B118.37 (18)C15C—C14C—H14G110.2
C1B—C6B—C7C122.02 (18)O2C—C14C—H14H110.2
C5B—C6B—C7C119.48 (18)C15C—C14C—H14H110.2
C2B—C7B—C6A112.35 (16)H14G—C14C—H14H108.5
C2B—C7B—H7B1109.1C14C—C15C—H15J109.5
C6A—C7B—H7B1109.1C14C—C15C—H15K109.5
C2B—C7B—H7B2109.1H15J—C15C—H15K109.5
C6A—C7B—H7B2109.1C14C—C15C—H15L109.5
H7B1—C7B—H7B2107.9H15J—C15C—H15L109.5
C9B—C8B—C10B108.7 (2)H15K—C15C—H15L109.5
C9B—C8B—C4B109.02 (18)C1C—O1C—C12C113.28 (14)
C10B—C8B—C4B110.53 (18)C13C—O2C—C14C116.60 (18)
C9B—C8B—C11B108.6 (2)N1—C2—C3179.4 (3)
C10B—C8B—C11B108.4 (2)C2—C3—H3D109.5
C4B—C8B—C11B111.50 (18)C2—C3—H3E109.5
C8B—C9B—H9B1109.5H3D—C3—H3E109.5
C8B—C9B—H9B2109.5C2—C3—H3F109.5
H9B1—C9B—H9B2109.5H3D—C3—H3F109.5
C8B—C9B—H9B3109.5H3E—C3—H3F109.5
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1C–C6C ring.
D—H···AD—HH···AD···AD—H···A
C3—H3E···O1C0.962.473.250 (4)139
C7C—H7C2···O3B0.972.383.312 (3)160
C12B—H12D···O2A0.972.573.526 (3)169
C15B—H15G···O3Aii0.962.483.398160
C5C—H5C···O1Ai0.932.443.190 (2)138
C11C—H11G···O1Bi0.962.563.477 (3)159
C10C—H10I···Cg1i0.962.733.588 (3)148
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC90H120O18·2C2H3N
Mr1571.97
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)12.6190 (2), 13.1500 (3), 14.8990 (4)
α, β, γ (°)75.9037 (11), 67.7646 (11), 74.5815 (19)
V3)2177.67 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.3 × 0.25
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19018, 9990, 7277
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.183, 1.03
No. of reflections9990
No. of parameters538
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: COLLECT (Hooft, 1998), COLLECT and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1C–C6C ring.
D—H···AD—HH···AD···AD—H···A
C3—H3E···O1C0.962.473.250 (4)139
C7C—H7C2···O3B0.972.383.312 (3)160
C12B—H12D···O2A0.972.573.526 (3)169
C15B—H15G···O3Ai0.962.483.398160
C5C—H5C···O1Aii0.932.443.190 (2)138
C11C—H11G···O1Bii0.962.563.477 (3)159
C10C—H10I···Cg1ii0.962.733.588 (3)148
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z.
 

Acknowledgements

This project was supported by the Praemium Academiae of the Academy of Science of the Czech Republic, by the Grant Agency of the Academy of Sciences of the CR (project No. IAAX08240901) and by the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 "Environmental Aspects of Sustainable Development of Society").

References

First citationAtwood, J. L., Barbour, L. J., Dalgarno, S., Raston, C. L. & Webb, H. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4351–4356.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (1998). J. Chem. Soc. Chem. Commun. 18, 1969–1970.  CrossRef Google Scholar
First citationGutsche, C. D. (2008). Monographs in Supramolecular Chemistry, 2nd ed. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationHomden, D. M. & Redshaw, C. (2008). Chem. Rev. 108, 5086–5130.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLing, J., Shen, Z. Q. & Zhu, W. P. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 1390–1399.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKervey, M. A., Seward, E. M., Ferguson, G., Ruhl, B. & Harris, S. J. (1985). J. Chem. Soc. Chem. Commun. pp. 388–90.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1418-o1419
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds