organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-But­­oxy-N′-[1-(4-methyl­phen­yl)ethyl­­idene]benzohydrazide

aDepartment of Physics, Arts and Sciences Faculty, Aksaray University, 68100 Aksaray, Turkey, bDepartment of Physics Education, Faculty of Education, Gazi University, Teknikokullar, Ankara, Turkey, and cDepartment of Chemistry, Arts and Sciences Faculty, Mugla University, 48000 Kotekli, Mugla, Turkey
*Correspondence e-mail: nefised@gmail.com

(Received 6 August 2012; accepted 15 August 2012; online 25 August 2012)

The mol­ecule of the title compound, C20H24N2O2, exists in a trans conformation with respect to the C=N bond. The dihedral angle between the benzene rings is 79.0 (1)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [001]. Two weak C—H⋯O inter­actions also occur.

Related literature

For acyl­hydrazone compounds, see: Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 8, 1910-1939.]); Vicini et al. (2006[Vicini, P., Incerti, M., Doytchinova, I. A., Colla, P., Busonera, B. & Loddo, R. (2006). Eur. J. Med. Chem. 41, 624-632.]); Chimenti et al. (2007[Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707-712.]). For aroylhydrazone compounds, see: Barbazan et al., 2008[Barbazan, P., Carballo, R., Covelo, B., Lodeiro, C., Lima, J. C. & Vazquez-Lopez, E. M. (2008). Eur. J. Inorg. Chem. pp. 2713-2720.]; Dang et al., 2007[Dang, T. T., Dang, T. T. & Langer, P. (2007). Tetrahedron Lett. 48, 3591-3593.]. Hydrazones typically act as bi- and tridentate, mono or biprotic depending on the reaction conditions, see: Gup & Kirkan (2005[Gup, R. & Kirkan, B. (2005). Spectrochim. Acta A, 62, 1188-1195.]); Naskar et al. (2004[Naskar, S., Biswas, S., Mishra, D., Adhikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. & Chattopadhyay, S. K. (2004). Inorg. Chim. Acta 357, 4257-4264.]); Sreeja et al. (2003[Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2003). Polyhedron, 23, 575-581.]). For bond lengths and angles in similar structures, see: Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); Mao et al. (2011[Mao, F.-L., Li, W.-S. & Zhou, X.-P. (2011). Acta Cryst. E67, o2547.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O2

  • Mr = 324.41

  • Monoclinic, C 1c 1

  • a = 15.0800 (4) Å

  • b = 14.0134 (4) Å

  • c = 8.2419 (2) Å

  • β = 94.609 (2)°

  • V = 1736.06 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 105 K

  • 0.38 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.970, Tmax = 0.987

  • 8163 measured reflections

  • 2150 independent reflections

  • 1980 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 0.93

  • 2150 reflections

  • 220 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.15 2.975 (2) 155
C16—H16C⋯O2i 0.98 2.57 3.307 (3) 131
C17—H17⋯O2ii 0.95 2.59 3.527 (3) 168
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acylhydrazones and their derivatives constitute a versatile class of compounds in organic and coordination chemistry. These compounds have interesting biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculous, antitumor, anti-HIV and antimicrobial activity (Rollas & Küçükgüzel, 2007; Vicini et al., 2006; Chimenti et al., 2007).

Aroylhydrazones are important compounds for drug design, as possible ligands for metal complexes, catalysis and also for the syntheses of heterocyclic compounds (Barbazan et al., 2008; Dang et al., 2007). The ease of preparation, increased hydrolytic stability relative to imines, and tendency toward crystallinity are all desirable characteristics of hydrazones. Due to these positive traits, the chemical properties of aroylhydrazones have been extensively studied for a long time. Acylhydrazones possess two connected nitrogen atoms of different nature and a carbon-nitrogen double bond that is conjugated with a lone electron pair of the terminal nitrogen atom. These structural fragments are mainly responsible for the physical and chemical properties of hydrazones. The introduction of functional groups in the hydrazone molecules expands the scope of use in coordination chemistry.

Aroylhydrazones are potential ligands due to having a number of bonding sites. They can act a neutral or monoanionic bidentate or tridentate ligand depending on the substituents and the reaction conditions. Furthermore, abilities to coordinate to metals either in keto (I) or enol (II) tautomeric form make them attractive as ligands. This compound is in the keto form in the solid state. The keto hydrazone moiety may coordinate to metals in the keto amide or deprotonated enolimine form. Hydrazones typically act as bi- and tridentate, mono or biprotic depending on the reaction conditions (Sreeja et al., 2003; Naskar et al., 2004; Gup & Kirkan, 2005).

The crystal structure is shown in Fig. 1 with atom-numbering scheme. The bond lengths and angles are in the normal ranges in the molecule. The molecule exist in a trans configuration with respect to the C10N2 [1.286 (3) Å] bond and the torsion angle N1—N2—C10—C11 = 176.6 (2)°. The O1—C5, O1—C4 and O2C9 bond lengths are 1.363 (3) Å, 1.444 (3) Å and 1.229 (3) Å, respectively. The N1—C9 and N1—N2 bond lengths are 1.356 (3) Å and 1.390 (3) Å. The other bond lengths and angles in the molecule are within expected ranges, and similar to the other studies (Singh & Singh, 2010; Li & Ban, 2009; Mao et al., 2011).

The ring A (C5–C8, C19, C20) and B (C11–C14, C17, C18) are each essentially planar. The dihedral angle between two substituted benzene rings is 79.0 (1)°, indicating the Schiff base molecule is twisted. The N1 atom lie above 0.937 (4) Å from the A plane. The N2 atom lie above 0.585 (4) Å from the B plane.

As can be seen from the packing diagram (Fig. 2), inter-molecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules and these hydrogen bonds may be effective in the stabilization of the crystal structure. In these interactions, there are the N1, C16 and C17 atoms of molecule as donor and the O2 atom of the other molecules as acceptor (Table 1, Fig. 2).

Related literature top

For acylhydrazone compounds, see: Rollas & Küçükgüzel (2007); Vicini et al. (2006); Chimenti et al. (2007). For aroylhydrazone compounds, see: Barbazan et al., 2008; Dang et al., 2007. For related literature [Please expand to state how these references are related], see: Gup & Kirkan (2005); Li & Ban (2009); Mao et al. (2011); Naskar et al. (2004); Singh & Singh (2010); Sreeja et al. (2003).

Experimental top

4'-Methylacetophenon (4 mmol, 0.552 g) dissolved in ethanol (10 ml) was added dropwise to a suspension of 4-hydroxybenzohydrazide (4 mmol, 0.608 g) with two drops of glacial acetic acid in ethanol (40 ml) in room temperature. The reaction mixture was refluxed for further 8 h and the colorless product was filtered. The pure hydrazone was collected by crystallization from ethanol.

A mixture 4-hydroxy-N'-[(1E)-1-(4-methylphenyl)ethylidene]benzohydrazide (10 mmol, 2.68 g), 1-bromobutane (10 mmol, 1.370 g) and dry K2CO3 (10 mmol, 1.380 g) in 40 ml acetone was refluxed with stirring for 24 h and poured to 200 ml of cold water. The white precipitate formed was filtered and washed with water and finally recrystallized from acetone-water. Chemical structure of title compound is given (I).

Refinement top

The H atoms were positioned geometrically, with C—H = 0.95 Å, N—H = 0.88 Å, and and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). Also, the methyl H atoms were positioned geometrically, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The absolute structure could not be determined and 1089 Friedel pairs were averaged before the last refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
An ORTEP drawing of molecular structure with the crystallographic numbering scheme. Thermal ellipsoids are drawn at 30% probability levels.

A packing diagram for (I), projected along c direction. Hydrogen bonds are indicated by dashed lines.
4-butoxy-N'-[1-(4-methylphenyl)ethylidene]benzohydrazide top
Crystal data top
C20H24N2O2F(000) = 696
Mr = 324.41Dx = 1.241 Mg m3
Monoclinic, C1c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C-2ycCell parameters from 3295 reflections
a = 15.0800 (4) Åθ = 2.7–28.2°
b = 14.0134 (4) ŵ = 0.08 mm1
c = 8.2419 (2) ÅT = 105 K
β = 94.609 (2)°Prism, colourless
V = 1736.06 (8) Å30.38 × 0.21 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2150 independent reflections
Radiation source: sealed tube1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2014
Tmin = 0.970, Tmax = 0.987k = 1817
8163 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.7866P]
where P = (Fo2 + 2Fc2)/3
2150 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H24N2O2V = 1736.06 (8) Å3
Mr = 324.41Z = 4
Monoclinic, C1c1Mo Kα radiation
a = 15.0800 (4) ŵ = 0.08 mm1
b = 14.0134 (4) ÅT = 105 K
c = 8.2419 (2) Å0.38 × 0.21 × 0.17 mm
β = 94.609 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2150 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1980 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.987Rint = 0.026
8163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.93Δρmax = 0.38 e Å3
2150 reflectionsΔρmin = 0.20 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37326 (10)0.84731 (12)0.17841 (19)0.0229 (4)
O20.09570 (11)0.91173 (11)0.70734 (19)0.0221 (3)
N10.02616 (12)0.99195 (14)0.4926 (2)0.0206 (4)
H10.03001.01650.39520.025*
N20.04815 (12)1.00759 (14)0.5785 (2)0.0204 (4)
C10.47160 (18)0.8908 (2)0.2273 (3)0.0316 (6)
H1A0.46980.84200.31270.047*
H1B0.51060.94310.25570.047*
H1C0.41140.91540.21740.047*
C20.50729 (16)0.84699 (19)0.0661 (3)0.0265 (5)
H2A0.56910.82500.07550.032*
H2B0.50890.89660.01950.032*
C30.45168 (16)0.76347 (18)0.0149 (3)0.0261 (5)
H3A0.44500.71720.10590.031*
H3B0.48430.73100.07850.031*
C40.36010 (16)0.79010 (17)0.0327 (3)0.0236 (5)
H4A0.32740.82690.05550.028*
H4B0.32550.73200.05400.028*
C50.30078 (15)0.86690 (15)0.2613 (3)0.0186 (4)
C60.31990 (15)0.90727 (16)0.4156 (3)0.0198 (4)
H60.37990.92040.45330.024*
C70.25217 (14)0.92824 (15)0.5135 (3)0.0192 (4)
H70.26580.95300.61990.023*
C80.16373 (14)0.91299 (15)0.4559 (3)0.0181 (4)
C90.09251 (14)0.93751 (15)0.5645 (3)0.0191 (4)
C100.09609 (14)1.08078 (16)0.5367 (3)0.0190 (4)
C110.17777 (14)1.09221 (16)0.6243 (3)0.0179 (4)
C120.21596 (15)1.01299 (16)0.6959 (3)0.0217 (5)
H120.19160.95120.68260.026*
C130.28925 (15)1.02417 (17)0.7862 (3)0.0230 (5)
H130.31360.97000.83580.028*
C140.32750 (15)1.11314 (17)0.8052 (3)0.0218 (5)
C150.40582 (17)1.1251 (2)0.9068 (3)0.0296 (5)
H15A0.46051.13200.83500.044*
H15B0.39711.18220.97490.044*
H15C0.41071.06900.97640.044*
C160.07349 (17)1.15369 (17)0.4137 (3)0.0257 (5)
H16A0.02381.19300.45910.039*
H16B0.12541.19440.38610.039*
H16C0.05651.12140.31540.039*
C170.29159 (15)1.19105 (16)0.7300 (3)0.0224 (5)
H170.31771.25230.73980.027*
C180.21795 (15)1.18082 (16)0.6403 (3)0.0212 (5)
H180.19471.23510.58930.025*
C190.14483 (15)0.87441 (15)0.3012 (3)0.0211 (4)
H190.08470.86510.26080.025*
C200.21321 (15)0.84930 (16)0.2050 (3)0.0210 (5)
H200.19990.82040.10170.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (8)0.0298 (8)0.0200 (8)0.0002 (7)0.0046 (6)0.0030 (7)
O20.0206 (8)0.0230 (8)0.0234 (8)0.0035 (6)0.0065 (6)0.0007 (7)
N10.0184 (9)0.0230 (10)0.0213 (9)0.0036 (7)0.0079 (7)0.0040 (7)
N20.0155 (9)0.0244 (9)0.0221 (9)0.0012 (7)0.0073 (7)0.0001 (8)
C10.0303 (14)0.0420 (14)0.0229 (12)0.0006 (11)0.0049 (10)0.0029 (11)
C20.0195 (11)0.0408 (14)0.0199 (11)0.0031 (9)0.0054 (9)0.0002 (10)
C30.0264 (12)0.0311 (12)0.0214 (10)0.0085 (9)0.0061 (9)0.0001 (10)
C40.0249 (11)0.0263 (11)0.0202 (10)0.0001 (9)0.0063 (8)0.0031 (9)
C50.0186 (10)0.0174 (10)0.0202 (10)0.0021 (8)0.0046 (8)0.0019 (8)
C60.0170 (10)0.0211 (11)0.0210 (11)0.0005 (8)0.0011 (8)0.0020 (8)
C70.0200 (11)0.0159 (10)0.0215 (11)0.0030 (8)0.0012 (9)0.0002 (8)
C80.0173 (11)0.0150 (9)0.0228 (11)0.0021 (7)0.0061 (8)0.0030 (8)
C90.0169 (10)0.0164 (10)0.0247 (11)0.0017 (8)0.0070 (8)0.0005 (8)
C100.0187 (10)0.0179 (10)0.0209 (10)0.0005 (8)0.0045 (8)0.0008 (8)
C110.0161 (10)0.0215 (10)0.0162 (10)0.0014 (8)0.0020 (8)0.0004 (9)
C120.0207 (11)0.0180 (11)0.0263 (11)0.0029 (8)0.0021 (8)0.0023 (9)
C130.0186 (10)0.0249 (11)0.0259 (11)0.0003 (9)0.0033 (9)0.0044 (9)
C140.0171 (10)0.0317 (12)0.0167 (10)0.0012 (9)0.0025 (8)0.0017 (9)
C150.0213 (12)0.0370 (14)0.0313 (13)0.0036 (10)0.0075 (10)0.0024 (11)
C160.0295 (12)0.0216 (11)0.0275 (12)0.0023 (9)0.0114 (10)0.0033 (9)
C170.0203 (11)0.0217 (11)0.0252 (11)0.0045 (8)0.0023 (9)0.0032 (9)
C180.0232 (11)0.0188 (10)0.0218 (11)0.0006 (8)0.0031 (9)0.0014 (9)
C190.0152 (10)0.0211 (10)0.0270 (11)0.0007 (8)0.0018 (8)0.0009 (9)
C200.0214 (11)0.0238 (11)0.0181 (10)0.0002 (8)0.0046 (8)0.0009 (9)
Geometric parameters (Å, º) top
O1—C51.363 (3)C8—C191.393 (3)
O1—C41.444 (3)C8—C91.492 (3)
O2—C91.229 (3)C10—C111.485 (3)
N1—C91.356 (3)C10—C161.498 (3)
N1—N21.390 (2)C11—C181.393 (3)
N1—H10.8800C11—C121.403 (3)
N2—C101.286 (3)C12—C131.390 (3)
C1—C21.522 (3)C12—H120.9500
C1—H1A0.9800C13—C141.388 (3)
C1—H1B0.9800C13—H130.9500
C1—H1C0.9800C14—C171.387 (3)
C2—C31.519 (4)C14—C151.511 (3)
C2—H2A0.9900C15—H15A0.9800
C2—H2B0.9900C15—H15B0.9800
C3—C41.512 (3)C15—H15C0.9800
C3—H3A0.9900C16—H16A0.9800
C3—H3B0.9900C16—H16B0.9800
C4—H4A0.9900C16—H16C0.9800
C4—H4B0.9900C17—C181.390 (3)
C5—C201.386 (3)C17—H170.9500
C5—C61.400 (3)C18—H180.9500
C6—C71.383 (3)C19—C201.396 (3)
C6—H60.9500C19—H190.9500
C7—C81.396 (3)C20—H200.9500
C7—H70.9500
C5—O1—C4117.82 (17)O2—C9—C8122.15 (19)
C9—N1—N2117.58 (17)N1—C9—C8114.14 (19)
C9—N1—H1121.2N2—C10—C11115.23 (19)
N2—N1—H1121.2N2—C10—C16124.9 (2)
C10—N2—N1116.62 (18)C11—C10—C16119.86 (19)
C2—C1—H1A109.5C18—C11—C12118.0 (2)
C2—C1—H1B109.5C18—C11—C10121.8 (2)
H1A—C1—H1B109.5C12—C11—C10120.24 (19)
C2—C1—H1C109.5C13—C12—C11120.5 (2)
H1A—C1—H1C109.5C13—C12—H12119.8
H1B—C1—H1C109.5C11—C12—H12119.8
C3—C2—C1112.9 (2)C14—C13—C12121.2 (2)
C3—C2—H2A109.0C14—C13—H13119.4
C1—C2—H2A109.0C12—C13—H13119.4
C3—C2—H2B109.0C17—C14—C13118.4 (2)
C1—C2—H2B109.0C17—C14—C15120.7 (2)
H2A—C2—H2B107.8C13—C14—C15120.9 (2)
C4—C3—C2114.7 (2)C14—C15—H15A109.5
C4—C3—H3A108.6C14—C15—H15B109.5
C2—C3—H3A108.6H15A—C15—H15B109.5
C4—C3—H3B108.6C14—C15—H15C109.5
C2—C3—H3B108.6H15A—C15—H15C109.5
H3A—C3—H3B107.6H15B—C15—H15C109.5
O1—C4—C3106.59 (19)C10—C16—H16A109.5
O1—C4—H4A110.4C10—C16—H16B109.5
C3—C4—H4A110.4H16A—C16—H16B109.5
O1—C4—H4B110.4C10—C16—H16C109.5
C3—C4—H4B110.4H16A—C16—H16C109.5
H4A—C4—H4B108.6H16B—C16—H16C109.5
O1—C5—C20125.24 (19)C14—C17—C18120.9 (2)
O1—C5—C6114.95 (19)C14—C17—H17119.5
C20—C5—C6119.81 (19)C18—C17—H17119.5
C7—C6—C5120.5 (2)C17—C18—C11121.0 (2)
C7—C6—H6119.7C17—C18—H18119.5
C5—C6—H6119.7C11—C18—H18119.5
C6—C7—C8120.0 (2)C8—C19—C20120.8 (2)
C6—C7—H7120.0C8—C19—H19119.6
C8—C7—H7120.0C20—C19—H19119.6
C19—C8—C7119.36 (19)C5—C20—C19119.5 (2)
C19—C8—C9122.27 (19)C5—C20—H20120.3
C7—C8—C9118.4 (2)C19—C20—H20120.3
O2—C9—N1123.69 (19)
C9—N1—N2—C10158.6 (2)N2—C10—C11—C18155.7 (2)
C1—C2—C3—C468.9 (3)C16—C10—C11—C1822.4 (3)
C5—O1—C4—C3169.15 (18)N2—C10—C11—C1223.3 (3)
C2—C3—C4—O165.7 (3)C16—C10—C11—C12158.6 (2)
C4—O1—C5—C2010.6 (3)C18—C11—C12—C132.9 (3)
C4—O1—C5—C6168.89 (18)C10—C11—C12—C13176.1 (2)
O1—C5—C6—C7178.39 (19)C11—C12—C13—C141.3 (4)
C20—C5—C6—C71.1 (3)C12—C13—C14—C170.8 (3)
C5—C6—C7—C82.8 (3)C12—C13—C14—C15178.6 (2)
C6—C7—C8—C191.6 (3)C13—C14—C17—C181.3 (3)
C6—C7—C8—C9179.34 (19)C15—C14—C17—C18178.1 (2)
N2—N1—C9—O29.6 (3)C14—C17—C18—C110.4 (3)
N2—N1—C9—C8171.93 (18)C12—C11—C18—C172.4 (3)
C19—C8—C9—O2130.8 (2)C10—C11—C18—C17176.6 (2)
C7—C8—C9—O248.2 (3)C7—C8—C19—C201.2 (3)
C19—C8—C9—N150.6 (3)C9—C8—C19—C20177.8 (2)
C7—C8—C9—N1130.3 (2)O1—C5—C20—C19178.9 (2)
N1—N2—C10—C11176.57 (18)C6—C5—C20—C191.7 (3)
N1—N2—C10—C165.4 (3)C8—C19—C20—C52.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.152.975 (2)155
C16—H16C···O2i0.982.573.307 (3)131
C17—H17···O2ii0.952.593.527 (3)168
Symmetry codes: (i) x, y+2, z1/2; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H24N2O2
Mr324.41
Crystal system, space groupMonoclinic, C1c1
Temperature (K)105
a, b, c (Å)15.0800 (4), 14.0134 (4), 8.2419 (2)
β (°) 94.609 (2)
V3)1736.06 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.970, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8163, 2150, 1980
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 0.93
No. of reflections2150
No. of parameters220
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.152.975 (2)155
C16—H16C···O2i0.982.573.307 (3)131
C17—H17···O2ii0.952.593.527 (3)168
Symmetry codes: (i) x, y+2, z1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskisehir, Turkey, for the use of the X-ray diffractometer.

References

First citationBarbazan, P., Carballo, R., Covelo, B., Lodeiro, C., Lima, J. C. & Vazquez-Lopez, E. M. (2008). Eur. J. Inorg. Chem. pp. 2713–2720.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDang, T. T., Dang, T. T. & Langer, P. (2007). Tetrahedron Lett. 48, 3591–3593.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGup, R. & Kirkan, B. (2005). Spectrochim. Acta A, 62, 1188–1195.  Web of Science CrossRef Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMao, F.-L., Li, W.-S. & Zhou, X.-P. (2011). Acta Cryst. E67, o2547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaskar, S., Biswas, S., Mishra, D., Adhikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. & Chattopadhyay, S. K. (2004). Inorg. Chim. Acta 357, 4257–4264.  Web of Science CSD CrossRef CAS Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 8, 1910–1939.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2003). Polyhedron, 23, 575–581.  Web of Science CSD CrossRef Google Scholar
First citationVicini, P., Incerti, M., Doytchinova, I. A., Colla, P., Busonera, B. & Loddo, R. (2006). Eur. J. Med. Chem. 41, 624–632.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds