organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(4-Eth­­oxy­phen­yl)imino­meth­yl]phenol

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 31 July 2012; accepted 1 August 2012; online 4 August 2012)

In the title compound, C15H15NO2, the dihedral angle between the benzene rings is 52.04 (5)° and the mol­ecule has an E conformation about the central C=N bond. In the crystal, mol­ecules are connected by O—H⋯N hydrogen bonds, forming zigzag chains along the b axis. The crystal packing also features weak C—H⋯O inter­actions.

Related literature

For Schiff base derivatives and related structures, see: Fejfarová et al. (2010[Fejfarová, K., Khalaji, A. D. & Dušek, M. (2010). Acta Cryst. E66, o2874.]); Özek et al. (2010[Özek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o684.]); Akkurt et al. (2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]); Khalaji et al. (2008[Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.], 2009[Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.]) For applications and properties of Schiff bases, see: Dalapati et al. (2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536-540.]); Keypour et al. (2010[Keypour, H., Dehghani-Firouzabadi, A. A., Rezaeivala, M. & Goudarziafshar, H. (2010). J. Iran. Chem. Soc. 7, 820-824.]); Khalil et al. (2009[Khalil, R.A., Jalil, A.H. & Abd-Alrazzak, A. Y. (2009). J. Iran. Chem. Soc. 6, 345-352.]); Khanmohammadi et al. (2009[Khanmohammadi, H., Salehifard, M. & Abnosi, M. H. (2009). J. Iran. Chem. Soc. 6, 300-309.]); Sun et al. (2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42-50.]); Da Silva et al. (2011[Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1-8.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO2

  • Mr = 241.3

  • Orthorhombic, P b c a

  • a = 10.9155 (2) Å

  • b = 9.4056 (2) Å

  • c = 25.0422 (5) Å

  • V = 2571.00 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 120 K

  • 0.54 × 0.20 × 0.03 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.795, Tmax = 1

  • 22644 measured reflections

  • 1978 independent reflections

  • 1780 reflections with I > 3σ(I)

  • Rint = 0.028

  • θmax = 61.1°

Refinement
  • R[F2 > 3σ(F2)] = 0.031

  • wR(F2) = 0.103

  • S = 1.71

  • 1978 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7b⋯O2i 0.96 2.50 3.3393 (15) 147
O2—H2o⋯N1ii 0.894 (17) 1.825 (17) 2.7098 (12) 170.0 (14)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+1, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Schiff base compounds exhibit a broad range of biological activities, including antifungal, and antibacterial (Da Silva et al., 2011). They are used as anion sensors (Dalapati et al., 2011; Khalil et al., 2009), non-linear optics compounds (Sun et al., 2012), and as versatile ligands in coordination chemistry (Khanmohammadi et al., 2009; Keypour et al., 2010). The present work is part of a structural study of Schiff bases (Khalaji et al., 2008, 2009; Fejfarová et al., 2010) and we report here the structure of (E)-(4-hydroxybenzylidene)-4-ethoxyaniline, (1).

The molecule of (1) (Fig. 1) has an E conformation about the central C=N bond and the C=N and C—N bond lengths of 1.2853 (45) and 1.4250 (14) Å agree well with the corresponding distances in other Schiff bases (Akkurt et al., 2008; Özek et al., 2010; Khalaji et al., 2008, 2009; Fejfarová et al., 2010). The dihedral angle between the two benzene rings is 52.04 (5)°. The ethoxy group is almost coplanar with the adjacent ring [dihedral angle 3.51 (12)°]. The molecules are connected by intermolecular O—H···N hydrogen bonds, forming zigzag chains along the b axis (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···O hydrogen bonds.

Related literature top

For Schiff base derivatives and related structures, see: Fejfarová et al. (2010); Özek et al. (2010); Akkurt et al. (2008); Khalaji et al. (2008, 2009) For applications and properties of Schiff bases, see: Dalapati et al. (2011); Keypour et al. (2010); Khalil et al. (2009); Khanmohammadi et al. (2009); Sun et al. (2012); Da Silva et al. (2011).

Experimental top

To a stirring solution of the 4-hydroxybenzaldehyde (0.2 mmol, in 5 ml of methanol) was added 4-ethoxyaniline (0.2 mmol) in 10 ml of methanol and the mixture was stirred for 1 h in air at 323 K and was then left at room temperature for several days without disturbance yielding suitable crystals of 1 that subsequently were filtered off and washed with Et2O. Yield: 82%.

Refinement top

The hydroxyl hydrogen atom was found in difference Fourier maps and its coordinates were refined. All other hydrogen atoms were calculated geometrically and refined as riding on their parent atoms. The methyl H atoms were allowed to rotate freely about the adjacent C–C bond. The displacement coefficients of hydrogen atoms Uiso(H) were set to 1.5Ueq(C, O) for the methyl- and hydroxyl- groups and to to 1.2Ueq(C) for the CH– and CH2- groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonded chain propagating along the b axis. Hydrogen bonds are drawn as dashed lines.
4-[(E)-(4-Ethoxyphenyl)iminomethyl]phenol top
Crystal data top
C15H15NO2F(000) = 1024
Mr = 241.3Dx = 1.246 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ac 2abCell parameters from 14821 reflections
a = 10.9155 (2) Åθ = 3.5–61.1°
b = 9.4056 (2) ŵ = 0.67 mm1
c = 25.0422 (5) ÅT = 120 K
V = 2571.00 (9) Å3Plate, light yellow
Z = 80.54 × 0.20 × 0.03 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1978 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1780 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.3784 pixels mm-1θmax = 61.1°, θmin = 3.5°
Rotation method data acquisition using ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1010
Tmin = 0.795, Tmax = 1l = 2827
22644 measured reflections
Refinement top
Refinement on F257 constraints
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0025000002I2)
S = 1.71(Δ/σ)max = 0.006
1978 reflectionsΔρmax = 0.11 e Å3
166 parametersΔρmin = 0.11 e Å3
0 restraints
Crystal data top
C15H15NO2V = 2571.00 (9) Å3
Mr = 241.3Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.9155 (2) ŵ = 0.67 mm1
b = 9.4056 (2) ÅT = 120 K
c = 25.0422 (5) Å0.54 × 0.20 × 0.03 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1978 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1780 reflections with I > 3σ(I)
Tmin = 0.795, Tmax = 1Rint = 0.028
22644 measured reflectionsθmax = 61.1°
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.71Δρmax = 0.11 e Å3
1978 reflectionsΔρmin = 0.11 e Å3
166 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08099 (8)0.58106 (10)0.55939 (4)0.0344 (3)
O20.50129 (8)0.13939 (9)0.85269 (3)0.0251 (3)
N10.26997 (8)0.30259 (10)0.68326 (4)0.0196 (3)
C10.18053 (10)0.37189 (12)0.65100 (4)0.0200 (3)
C20.06035 (11)0.32217 (13)0.64660 (4)0.0234 (4)
C30.02398 (11)0.39425 (13)0.61577 (5)0.0260 (4)
C40.00974 (12)0.51683 (14)0.58837 (4)0.0259 (4)
C50.12999 (11)0.56466 (13)0.59109 (5)0.0251 (4)
C60.21487 (11)0.49095 (12)0.62174 (5)0.0228 (4)
C70.04877 (15)0.70560 (14)0.52934 (5)0.0357 (4)
C80.16378 (16)0.75963 (18)0.50327 (7)0.0509 (5)
C90.23493 (11)0.24457 (11)0.72715 (5)0.0208 (4)
C100.42099 (10)0.09397 (12)0.74119 (5)0.0198 (4)
C110.48630 (10)0.00196 (12)0.77159 (4)0.0199 (4)
C120.44379 (10)0.04176 (12)0.82220 (4)0.0205 (4)
C130.33635 (10)0.01912 (12)0.84201 (5)0.0230 (4)
C140.27084 (11)0.11386 (12)0.81106 (4)0.0228 (4)
C150.31179 (10)0.15335 (12)0.76005 (4)0.0202 (4)
H20.0362960.237320.6651540.028*
H30.1064860.359580.6131960.0313*
H50.1542980.6483320.5718610.0301*
H60.2984370.522670.6227310.0273*
H7a0.0098710.6806910.5023440.0429*
H7b0.0171070.7768550.5530660.0429*
H8a0.1446240.8405380.4814360.0764*
H8b0.1985210.6860450.481440.0764*
H8c0.2216360.7868240.5302730.0764*
H90.1527320.2625620.7389960.0249*
H100.4509450.1203860.7065380.0237*
H110.5611330.0415810.7580220.0239*
H130.3080260.00490.8771650.0276*
H140.1960030.1533910.824660.0273*
H2o0.5725 (16)0.1625 (16)0.8374 (6)0.0377*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (5)0.0399 (6)0.0330 (5)0.0097 (4)0.0083 (4)0.0063 (4)
O20.0188 (5)0.0286 (5)0.0279 (5)0.0040 (3)0.0011 (3)0.0074 (3)
N10.0168 (5)0.0182 (5)0.0238 (5)0.0005 (4)0.0022 (4)0.0012 (4)
C10.0181 (6)0.0208 (6)0.0210 (6)0.0025 (4)0.0003 (4)0.0033 (5)
C20.0218 (6)0.0235 (7)0.0248 (6)0.0005 (5)0.0009 (5)0.0002 (5)
C30.0180 (6)0.0325 (7)0.0277 (7)0.0002 (5)0.0020 (5)0.0016 (5)
C40.0263 (7)0.0303 (7)0.0212 (6)0.0081 (5)0.0028 (5)0.0019 (5)
C50.0281 (7)0.0243 (6)0.0229 (6)0.0017 (5)0.0022 (5)0.0005 (5)
C60.0204 (6)0.0238 (6)0.0241 (6)0.0003 (5)0.0014 (5)0.0020 (5)
C70.0496 (9)0.0313 (7)0.0262 (7)0.0121 (6)0.0067 (6)0.0008 (5)
C80.0644 (11)0.0465 (9)0.0418 (9)0.0231 (8)0.0190 (8)0.0003 (7)
C90.0166 (6)0.0199 (6)0.0259 (7)0.0002 (4)0.0001 (5)0.0030 (5)
C100.0176 (6)0.0207 (6)0.0209 (6)0.0030 (4)0.0007 (4)0.0011 (4)
C110.0154 (6)0.0205 (6)0.0239 (6)0.0006 (4)0.0010 (4)0.0023 (5)
C120.0169 (6)0.0196 (6)0.0249 (6)0.0035 (4)0.0041 (4)0.0005 (5)
C130.0190 (6)0.0271 (7)0.0228 (6)0.0026 (5)0.0014 (5)0.0015 (5)
C140.0167 (6)0.0248 (6)0.0267 (6)0.0005 (5)0.0007 (5)0.0014 (5)
C150.0171 (6)0.0193 (6)0.0243 (6)0.0030 (4)0.0026 (5)0.0025 (5)
Geometric parameters (Å, º) top
O1—C41.3684 (15)C7—H7a0.96
O1—C71.4360 (16)C7—H7b0.96
O2—C121.3492 (14)C8—H8a0.96
O2—H2o0.894 (17)C8—H8b0.96
N1—C11.4250 (14)C8—H8c0.96
N1—C91.2853 (14)C9—C151.4557 (16)
C1—C21.3971 (16)C9—H90.96
C1—C61.3897 (16)C10—C111.3791 (16)
C2—C31.3795 (17)C10—C151.3985 (15)
C2—H20.96C10—H100.96
C3—C41.3913 (17)C11—C121.4006 (15)
C3—H30.96C11—H110.96
C4—C51.3892 (17)C12—C131.3961 (16)
C5—C61.3887 (16)C13—C141.3807 (16)
C5—H50.96C13—H130.96
C6—H60.96C14—C151.4033 (16)
C7—C81.504 (2)C14—H140.96
C4—O1—C7117.43 (10)C7—C8—H8a109.47
C12—O2—H2o109.1 (9)C7—C8—H8b109.47
C1—N1—C9118.37 (9)C7—C8—H8c109.47
N1—C1—C2122.33 (10)H8a—C8—H8b109.47
N1—C1—C6118.86 (10)H8a—C8—H8c109.47
C2—C1—C6118.78 (10)H8b—C8—H8c109.47
C1—C2—C3120.40 (11)N1—C9—C15124.24 (10)
C1—C2—H2119.8N1—C9—H9117.88
C3—C2—H2119.8C15—C9—H9117.88
C2—C3—C4120.45 (11)C11—C10—C15121.02 (10)
C2—C3—H3119.77C11—C10—H10119.49
C4—C3—H3119.77C15—C10—H10119.49
O1—C4—C3115.84 (11)C10—C11—C12120.21 (10)
O1—C4—C5124.54 (11)C10—C11—H11119.89
C3—C4—C5119.61 (11)C12—C11—H11119.9
C4—C5—C6119.73 (11)O2—C12—C11122.68 (10)
C4—C5—H5120.14O2—C12—C13117.95 (10)
C6—C5—H5120.14C11—C12—C13119.35 (10)
C1—C6—C5120.91 (11)C12—C13—C14120.02 (11)
C1—C6—H6119.54C12—C13—H13119.99
C5—C6—H6119.54C14—C13—H13119.99
O1—C7—C8107.38 (12)C13—C14—C15121.12 (10)
O1—C7—H7a109.47C13—C14—H14119.44
O1—C7—H7b109.47C15—C14—H14119.44
C8—C7—H7a109.47C9—C15—C10122.37 (10)
C8—C7—H7b109.47C9—C15—C14119.18 (10)
H7a—C7—H7b111.48C10—C15—C14118.24 (10)
C4—O1—C7—C8177.51 (11)N1—C9—C15—C1015.04 (18)
C9—N1—C1—C235.10 (15)N1—C9—C15—C14170.16 (11)
C9—N1—C1—C6146.67 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7b···O2i0.962.503.3393 (15)147
O2—H2o···N1ii0.894 (17)1.825 (17)2.7098 (12)170.0 (14)
Symmetry codes: (i) x1/2, y+1, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H15NO2
Mr241.3
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)10.9155 (2), 9.4056 (2), 25.0422 (5)
V3)2571.00 (9)
Z8
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.54 × 0.20 × 0.03
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.795, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
22644, 1978, 1780
Rint0.028
θmax (°)61.1
(sin θ/λ)max1)0.568
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.103, 1.71
No. of reflections1978
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.11

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7b···O2i0.962.503.3393 (15)146.6
O2—H2o···N1ii0.894 (17)1.825 (17)2.7098 (12)170.0 (14)
Symmetry codes: (i) x1/2, y+1, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

We acknowledge Golestan University for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationAkkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.  Web of Science CSD CrossRef IUCr Journals
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536–540.  Web of Science CrossRef CAS
First citationDa Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1–8.  CrossRef
First citationFejfarová, K., Khalaji, A. D. & Dušek, M. (2010). Acta Cryst. E66, o2874.  Web of Science CSD CrossRef IUCr Journals
First citationKeypour, H., Dehghani-Firouzabadi, A. A., Rezaeivala, M. & Goudarziafshar, H. (2010). J. Iran. Chem. Soc. 7, 820–824.  CrossRef CAS
First citationKhalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4.  CAS
First citationKhalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.  Web of Science CSD CrossRef IUCr Journals
First citationKhalil, R.A., Jalil, A.H. & Abd-Alrazzak, A. Y. (2009). J. Iran. Chem. Soc. 6, 345–352.  CrossRef CAS
First citationKhanmohammadi, H., Salehifard, M. & Abnosi, M. H. (2009). J. Iran. Chem. Soc. 6, 300–309.  CrossRef CAS
First citationÖzek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o684.  Web of Science CSD CrossRef IUCr Journals
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds