supplementary materials


ff2078 scheme

Acta Cryst. (2012). E68, m1199-m1200    [ doi:10.1107/S1600536812035544 ]

Triaqua[2,2'-(propane-1,3-diyl)bis(5-carboxy-1H-imidazole-4-carboxylato-[kappa]2N3,O4)]calcium(II) tetrahydrate

L.-Z. Du and X. Li

Abstract top

In the title compound, [Ca(C13H10N4O8)(H2O)3]·4H2O, the CaII ion is hepta-coordinated by two N atoms and two O atoms from a tetradentate 1,3-bis-(1H-imidazole-4,5-dicarboxylate) propane dianion and three water O atoms, giving a distorted pentagonal-bipyramidal coordination environment. The Ca-O bond lengths are in the range 2.354 (3)-2.453 (2) Å, while the Ca-N bond lengths are in the range 2.523 (2)-2.548 (2) Å. An intramolecular O-H...O hydrogen bond between the carboxy and carboxylate groups stabilizes the molecular configuration. A three-dimensional network of N-H...O and O-H...O hydrogen bonds help to stabilize the crystal packing.

Comment top

Aromatic polycarboxylates, especially the N-heterocyclic carboxylates, are excellent candidates for preparing novel metal-organic frameworks, because of their versatile coordination modes and their ability to act as hydrogen-bonding donors and acceptors. For example, 4,5-imidazoledicarboxylate acid (Zhu et al., 2010; Lu et al., 2010), a planar rigid N-heterocyclic dicarboxylate acid, has been widely used to synthesize various coordination polymers because it has very flexible coordination modes, which derives from both imidazole and carboxylate functionality. Recently, in order to inherit the outstanding coordination properties of 4,5-imidazoledicarboxylic group, many 2-position substituent derivatives, such as 2-methyl-1H-imidazole-4,5-dicarboxylic acid (Song et al., 2010), 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (Zhang et al., 2010; Wang et al., 2008), 2-propyl-1H-imidazole-4,5-dicarboxylic acid (Feng et al., 2010; Liu et al., 2010), 2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylic acid (Zheng et al., 20111), 2-phenyl-1H-imidazole-4,5-dicarboxylic acid (Zhu et al., 2011) and 2-pyridyl-1H-imidazole-4,5-dicarboxylic acid (Li et al., 2009; Li et al., 2010) have been designed and used construct various metal complexes. Here, we want to report a calcium(II) complex, Ca(C13H10O4)(H2O)3].4H2O, based on a new imidazole dicarboxylate ligand, 1,3-Bis-(1H-imidazole-4,5-dicarboxylate acid).

As shown in Fig. 1, the molecule of (I) is a discrete neutral monomer, in which the asymmetric unit comprises a CaII ion, one 1,3-Bis-(1H-imidazole-4,5-dicarboxylate) propane dianion, three coordinated water molecules and four free water molecules. The CaII ion is hepta-coordinated, showing a distorted pentagonal-bipyramidal coordination environment. The equatorial plane is defined by two nitrogen atoms (N1, N3) and two oxygen atoms (O1, O8) from a 1,3-Bis-(1H-imidazole-4,5-dicarboxylate) propane dianion and one water molecule (O10). The axial positions are occupied by two coordinated water molecules with the bond angle of O9—Ca1—O11 being 159.80 (9) °. The Ca—O bond distances are in the range of 2.354 (3) - 2.453 (2) Å, while the Ca—N bond distances are in the range of 2.523 (2) - 2.548 (2) Å. An intramolecular O—H···O hydrogen bond between the carboxy and carboxylate groups stabilizes the molecular configuration. A three-dimensional network of N—H···O and O—H···O hydrogen bonds help to stabilize the crystal packing.

Related literature top

For complexes based on 4,5-imidazoledicarboxylic acid, see: Zhu et al. (2010); Lu et al. (2010). For complexes based on 2-methyl-1H-imidazole-4,5-dicarboxylic acid, see: Song et al. (2010). For complexes based on 2-ethyl-1H-imidazole-4,5-dicarboxylic acid, see: Zhang et al. (2010); Wang et al. (2008). For complexes based on 2-propyl-1H-imidazole-4,5-dicarboxylic acid, see: Feng et al. (2010); Liu et al. (2010). For complexes based on 2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylic acid, see: Zheng et al. (2011). For complexes based on 2-phenyl-1H-imidazole-4,5-dicarboxylic acid, see: Zhu et al. (2011). For complexes based on 2-pyridyl-1H-imidazole-4,5-dicarboxylic acid, see: Li et al. (2009, 2010).

Experimental top

A mixture of calcium chloride dihydrate (0.0146 g, 0.1 mmol), 1,3-Bis-(1H-imidazole-4,5-dicarboxylate acid) propane (0.0352 g, 0.1 mmol), pyridine (0.8 ml) and H2O (10 ml) was sealed into a Teflon-lined stainless autoclave and heated at 413 K for 3 days. The bomb was allowed to cool to room temperature gradually and colorless block crystals of (I) were obtained.

Refinement top

H atoms attached to N and O atoms were located in a difference Fourier maps and refined as riding in their as-found relative positions, with Uiso(H) = 1.5Ueq(O,N). Other H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.
Triaqua[2,2'-(propane-1,3-diyl)bis(5-carboxy-1H-imidazole-4-carboxylato- κ2N3,O4)]calcium(II) tetrahydrate top
Crystal data top
[Ca(C13H10N4O8)(H2O3)3]·4H2OZ = 2
Mr = 516.44F(000) = 540
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7794 (12) ÅCell parameters from 1354 reflections
b = 12.172 (2) Åθ = 2.5–23.1°
c = 13.718 (2) ŵ = 0.37 mm1
α = 98.776 (2)°T = 296 K
β = 102.420 (2)°Block, colourless
γ = 90.444 (2)°0.16 × 0.16 × 0.14 mm
V = 1091.6 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
4031 independent reflections
Radiation source: X-ray tube2595 reflections with I > 2σ(I)
Phi and omega scans monochromatorRint = 0.040
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 88
Tmin = 0.943, Tmax = 0.950k = 1414
8318 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.2508P]
where P = (Fo2 + 2Fc2)/3
4031 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 0.24 e Å3
14 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ca(C13H10N4O8)(H2O3)3]·4H2Oγ = 90.444 (2)°
Mr = 516.44V = 1091.6 (3) Å3
Triclinic, P1Z = 2
a = 6.7794 (12) ÅMo Kα radiation
b = 12.172 (2) ŵ = 0.37 mm1
c = 13.718 (2) ÅT = 296 K
α = 98.776 (2)°0.16 × 0.16 × 0.14 mm
β = 102.420 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4031 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2595 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.950Rint = 0.040
8318 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.24 e Å3
S = 1.01Δρmin = 0.32 e Å3
4031 reflectionsAbsolute structure: ?
344 parametersFlack parameter: ?
14 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.34365 (10)0.10418 (5)0.30772 (5)0.02902 (18)
O10.4347 (3)0.17772 (16)0.48632 (15)0.0339 (5)
O20.4429 (3)0.31736 (17)0.61241 (15)0.0404 (6)
O30.3556 (3)0.51623 (17)0.63708 (15)0.0381 (6)
H30.38140.45020.63090.046*
O40.2140 (3)0.63567 (16)0.53912 (16)0.0375 (6)
O50.2380 (4)0.07270 (19)0.21218 (17)0.0498 (7)
O60.1955 (4)0.08158 (19)0.14977 (16)0.0489 (7)
H60.19550.09840.09410.059*
O70.2100 (3)0.14045 (16)0.01549 (16)0.0406 (6)
O80.2447 (3)0.05781 (16)0.17484 (16)0.0379 (6)
O90.0695 (4)0.03304 (19)0.36754 (17)0.0414 (6)
O100.5458 (4)0.0399 (2)0.36928 (19)0.0464 (6)
O110.6575 (4)0.1900 (2)0.31047 (19)0.0432 (6)
O120.9370 (5)0.1553 (2)0.5324 (2)0.0604 (8)
O130.3808 (5)0.3595 (3)0.8695 (2)0.0670 (8)
O140.0383 (4)0.6606 (2)0.2953 (2)0.0514 (7)
O150.2804 (4)0.7234 (2)0.21968 (19)0.0511 (7)
N10.2148 (4)0.29607 (19)0.34785 (17)0.0282 (6)
N20.1366 (4)0.47230 (19)0.36829 (18)0.0278 (6)
H20.09020.53490.35420.033*
N30.2951 (4)0.14885 (19)0.12881 (17)0.0296 (6)
N40.2984 (4)0.1999 (2)0.01827 (18)0.0322 (6)
H40.30660.24170.06260.039*
C10.2844 (4)0.3426 (2)0.4475 (2)0.0246 (7)
C20.2362 (4)0.4526 (2)0.4611 (2)0.0248 (7)
C30.1233 (5)0.3772 (2)0.3025 (2)0.0281 (7)
C40.3947 (5)0.2746 (2)0.5201 (2)0.0288 (7)
C50.2698 (4)0.5412 (2)0.5491 (2)0.0282 (7)
C60.0236 (5)0.3679 (3)0.1933 (2)0.0382 (9)
H6A0.10090.40760.18720.046*
H6B0.01160.29020.16610.046*
C70.1548 (6)0.4140 (3)0.1298 (2)0.0471 (10)
H7A0.18730.49220.15600.056*
H7B0.07750.40870.06090.056*
C80.3519 (5)0.3533 (2)0.1291 (2)0.0421 (9)
H8A0.43240.39090.09260.050*
H8B0.42840.35740.19810.050*
C90.3172 (5)0.2347 (2)0.0816 (2)0.0311 (8)
C100.2618 (4)0.0566 (2)0.0547 (2)0.0271 (7)
C110.2642 (4)0.0872 (2)0.0371 (2)0.0300 (7)
C120.2371 (4)0.0524 (2)0.0845 (2)0.0305 (7)
C130.2322 (5)0.0231 (3)0.1405 (3)0.0376 (8)
H5W0.720 (5)0.247 (2)0.350 (2)0.083 (15)*
H6W0.726 (5)0.167 (3)0.266 (2)0.080 (15)*
H4W0.542 (5)0.083 (2)0.4128 (19)0.054 (12)*
H3W0.612 (5)0.067 (3)0.325 (2)0.070 (14)*
H13W0.370 (5)0.728 (4)0.276 (2)0.106*
H12W0.062 (5)0.683 (4)0.273 (3)0.106*
H2W0.032 (4)0.000 (3)0.324 (3)0.106*
H14W0.269 (7)0.7895 (16)0.205 (3)0.106*
H11W0.052 (7)0.709 (3)0.346 (2)0.106*
H9W0.498 (3)0.345 (4)0.858 (4)0.106*
H7W0.904 (7)0.102 (3)0.560 (3)0.106*
H10W0.280 (5)0.360 (4)0.820 (2)0.106*
H1W0.026 (6)0.074 (3)0.415 (2)0.106*
H8W0.844 (5)0.197 (3)0.509 (3)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0426 (4)0.0223 (3)0.0218 (4)0.0014 (3)0.0072 (3)0.0021 (3)
O10.0529 (15)0.0228 (11)0.0259 (13)0.0087 (10)0.0080 (11)0.0040 (9)
O20.0593 (16)0.0390 (13)0.0192 (12)0.0103 (11)0.0017 (11)0.0028 (10)
O30.0533 (15)0.0305 (12)0.0266 (13)0.0024 (11)0.0052 (11)0.0029 (10)
O40.0464 (14)0.0253 (12)0.0377 (14)0.0017 (11)0.0076 (11)0.0020 (10)
O50.0657 (18)0.0576 (16)0.0262 (14)0.0151 (13)0.0167 (12)0.0011 (12)
O60.0706 (18)0.0461 (15)0.0284 (14)0.0049 (13)0.0158 (12)0.0062 (11)
O70.0509 (15)0.0258 (12)0.0396 (14)0.0010 (11)0.0072 (12)0.0082 (10)
O80.0527 (15)0.0292 (12)0.0305 (14)0.0000 (11)0.0054 (11)0.0054 (10)
O90.0456 (16)0.0444 (15)0.0321 (15)0.0064 (12)0.0074 (12)0.0017 (11)
O100.0652 (18)0.0437 (15)0.0390 (16)0.0190 (13)0.0217 (14)0.0182 (13)
O110.0504 (17)0.0382 (14)0.0371 (16)0.0096 (12)0.0149 (13)0.0127 (12)
O120.087 (2)0.0513 (18)0.0465 (17)0.0267 (15)0.0146 (15)0.0186 (13)
O130.075 (2)0.075 (2)0.058 (2)0.0009 (19)0.0211 (17)0.0238 (16)
O140.0622 (18)0.0382 (15)0.0601 (19)0.0109 (14)0.0211 (15)0.0165 (12)
O150.0573 (18)0.0431 (15)0.0495 (17)0.0013 (14)0.0018 (13)0.0165 (13)
N10.0368 (16)0.0250 (13)0.0210 (14)0.0012 (12)0.0037 (12)0.0015 (11)
N20.0352 (16)0.0204 (13)0.0263 (15)0.0020 (11)0.0053 (12)0.0015 (11)
N30.0404 (17)0.0260 (14)0.0195 (14)0.0014 (12)0.0030 (12)0.0004 (11)
N40.0396 (17)0.0356 (15)0.0225 (15)0.0009 (13)0.0082 (12)0.0063 (12)
C10.0309 (18)0.0224 (16)0.0207 (17)0.0006 (13)0.0073 (14)0.0015 (13)
C20.0263 (17)0.0258 (16)0.0215 (16)0.0012 (13)0.0061 (14)0.0004 (13)
C30.0319 (19)0.0247 (16)0.0279 (18)0.0013 (14)0.0057 (15)0.0057 (14)
C40.0320 (19)0.0275 (17)0.0275 (19)0.0011 (14)0.0081 (15)0.0045 (14)
C50.0250 (18)0.0281 (18)0.0306 (19)0.0040 (14)0.0071 (15)0.0005 (14)
C60.050 (2)0.0294 (18)0.0276 (19)0.0061 (16)0.0030 (16)0.0017 (15)
C70.086 (3)0.0274 (18)0.0260 (19)0.0087 (19)0.0066 (19)0.0060 (15)
C80.066 (3)0.0328 (19)0.0253 (19)0.0139 (18)0.0116 (18)0.0024 (15)
C90.042 (2)0.0301 (17)0.0214 (18)0.0005 (15)0.0074 (15)0.0034 (14)
C100.0255 (17)0.0289 (16)0.0253 (18)0.0015 (14)0.0050 (14)0.0001 (14)
C110.0282 (18)0.0314 (18)0.0276 (19)0.0001 (14)0.0074 (15)0.0058 (14)
C120.0256 (18)0.0288 (17)0.034 (2)0.0036 (14)0.0026 (15)0.0004 (15)
C130.035 (2)0.046 (2)0.030 (2)0.0069 (17)0.0116 (16)0.0051 (17)
Geometric parameters (Å, º) top
Ca1—O112.354 (3)O14—H11W0.860 (10)
Ca1—O102.379 (3)O15—H13W0.864 (10)
Ca1—O92.393 (3)O15—H14W0.859 (10)
Ca1—O12.420 (2)N1—C31.333 (3)
Ca1—O82.453 (2)N1—C11.377 (3)
Ca1—N12.523 (2)N2—C31.345 (3)
Ca1—N32.548 (2)N2—C21.364 (3)
Ca1—H3W2.78 (3)N2—H20.8600
O1—C41.253 (3)N3—C91.333 (4)
O2—C41.265 (3)N3—C101.376 (3)
O3—C51.304 (3)N4—C91.349 (3)
O3—H30.8200N4—C111.366 (4)
O4—C51.232 (3)N4—H40.8600
O5—C131.237 (4)C1—C21.375 (4)
O6—C131.279 (4)C1—C41.475 (4)
O6—H60.8200C2—C51.467 (4)
O7—C121.301 (3)C3—C61.492 (4)
O8—C121.242 (3)C6—C71.529 (5)
O9—H2W0.861 (10)C6—H6A0.9700
O9—H1W0.859 (10)C6—H6B0.9700
O10—H4W0.859 (10)C7—C81.533 (5)
O10—H3W0.855 (10)C7—H7A0.9700
O11—H5W0.855 (10)C7—H7B0.9700
O11—H6W0.858 (10)C8—C91.486 (4)
O12—H7W0.858 (10)C8—H8A0.9700
O12—H8W0.852 (10)C8—H8B0.9700
O13—H9W0.856 (10)C10—C111.370 (4)
O13—H10W0.856 (10)C10—C121.465 (4)
O14—H12W0.862 (10)C11—C131.482 (4)
O11—Ca1—O1083.73 (10)C10—N3—Ca1114.06 (19)
O11—Ca1—O9159.80 (9)C9—N4—C11108.4 (2)
O10—Ca1—O989.24 (9)C9—N4—H4125.8
O11—Ca1—O181.93 (8)C11—N4—H4125.8
O10—Ca1—O179.49 (8)C2—C1—N1109.7 (3)
O9—Ca1—O178.17 (8)C2—C1—C4130.5 (3)
O11—Ca1—O8114.31 (8)N1—C1—C4119.9 (2)
O10—Ca1—O875.75 (8)N2—C2—C1105.6 (2)
O9—Ca1—O881.96 (8)N2—C2—C5120.8 (3)
O1—Ca1—O8148.28 (7)C1—C2—C5133.6 (3)
O11—Ca1—N187.84 (8)N1—C3—N2110.8 (3)
O10—Ca1—N1146.79 (9)N1—C3—C6126.0 (3)
O9—Ca1—N187.76 (8)N2—C3—C6123.1 (3)
O1—Ca1—N167.53 (7)O1—C4—O2124.0 (3)
O8—Ca1—N1136.25 (8)O1—C4—C1117.8 (3)
O11—Ca1—N377.65 (9)O2—C4—C1118.2 (3)
O10—Ca1—N3124.49 (9)O4—C5—O3121.7 (3)
O9—Ca1—N3121.47 (8)O4—C5—C2120.1 (3)
O1—Ca1—N3145.79 (7)O3—C5—C2118.3 (3)
O8—Ca1—N365.91 (7)C3—C6—C7113.7 (3)
N1—Ca1—N384.44 (8)C3—C6—H6A108.8
O11—Ca1—H3W76.2 (7)C7—C6—H6A108.8
O10—Ca1—H3W16.9 (5)C3—C6—H6B108.8
O9—Ca1—H3W101.5 (6)C7—C6—H6B108.8
O1—Ca1—H3W93.4 (6)H6A—C6—H6B107.7
O8—Ca1—H3W66.6 (7)C6—C7—C8113.6 (3)
N1—Ca1—H3W156.9 (8)C6—C7—H7A108.9
N3—Ca1—H3W107.8 (5)C8—C7—H7A108.9
C4—O1—Ca1121.77 (19)C6—C7—H7B108.9
C5—O3—H3109.5C8—C7—H7B108.9
C13—O6—H6109.5H7A—C7—H7B107.7
C12—O8—Ca1121.90 (19)C9—C8—C7112.8 (3)
Ca1—O9—H2W118 (3)C9—C8—H8A109.0
Ca1—O9—H1W119 (3)C7—C8—H8A109.0
H2W—O9—H1W109 (4)C9—C8—H8B109.0
Ca1—O10—H4W136 (2)C7—C8—H8B109.0
Ca1—O10—H3W109 (3)H8A—C8—H8B107.8
H4W—O10—H3W112 (4)N3—C9—N4110.5 (2)
Ca1—O11—H5W130 (3)N3—C9—C8126.2 (3)
Ca1—O11—H6W121 (3)N4—C9—C8123.3 (3)
H5W—O11—H6W109 (4)C11—C10—N3110.0 (3)
H7W—O12—H8W118 (5)C11—C10—C12131.7 (3)
H9W—O13—H10W120 (5)N3—C10—C12118.3 (3)
H12W—O14—H11W108 (4)N4—C11—C10105.5 (3)
H13W—O15—H14W106 (4)N4—C11—C13122.0 (3)
C3—N1—C1105.5 (2)C10—C11—C13132.5 (3)
C3—N1—Ca1141.1 (2)O8—C12—O7122.1 (3)
C1—N1—Ca1112.41 (17)O8—C12—C10119.0 (3)
C3—N2—C2108.4 (2)O7—C12—C10118.9 (3)
C3—N2—H2125.8O5—C13—O6124.0 (3)
C2—N2—H2125.8O5—C13—C11119.3 (3)
C9—N3—C10105.6 (2)O6—C13—C11116.7 (3)
C9—N3—Ca1139.60 (19)
O11—Ca1—O1—C486.6 (2)Ca1—N1—C3—N2165.8 (2)
O10—Ca1—O1—C4171.7 (2)C1—N1—C3—C6179.7 (3)
O9—Ca1—O1—C496.9 (2)Ca1—N1—C3—C612.4 (5)
O8—Ca1—O1—C4149.2 (2)C2—N2—C3—N11.6 (3)
N1—Ca1—O1—C44.4 (2)C2—N2—C3—C6179.9 (3)
N3—Ca1—O1—C433.0 (3)Ca1—O1—C4—O2178.5 (2)
O11—Ca1—O8—C1254.5 (2)Ca1—O1—C4—C11.6 (4)
O10—Ca1—O8—C12130.7 (2)C2—C1—C4—O1173.7 (3)
O9—Ca1—O8—C12138.0 (2)N1—C1—C4—O15.3 (4)
O1—Ca1—O8—C12170.5 (2)C2—C1—C4—O26.3 (5)
N1—Ca1—O8—C1259.8 (3)N1—C1—C4—O2174.7 (3)
N3—Ca1—O8—C128.2 (2)N2—C2—C5—O42.5 (4)
O11—Ca1—N1—C390.9 (3)C1—C2—C5—O4177.9 (3)
O10—Ca1—N1—C3166.0 (3)N2—C2—C5—O3176.2 (3)
O9—Ca1—N1—C3108.8 (3)C1—C2—C5—O33.4 (5)
O1—Ca1—N1—C3173.1 (3)N1—C3—C6—C799.3 (4)
O8—Ca1—N1—C332.8 (4)N2—C3—C6—C778.7 (4)
N3—Ca1—N1—C313.2 (3)C3—C6—C7—C861.5 (3)
O11—Ca1—N1—C175.75 (19)C6—C7—C8—C963.7 (4)
O10—Ca1—N1—C10.7 (3)C10—N3—C9—N40.2 (3)
O9—Ca1—N1—C184.53 (19)Ca1—N3—C9—N4169.1 (2)
O1—Ca1—N1—C16.41 (18)C10—N3—C9—C8178.6 (3)
O8—Ca1—N1—C1160.45 (17)Ca1—N3—C9—C812.6 (5)
N3—Ca1—N1—C1153.55 (19)C11—N4—C9—N30.4 (4)
O11—Ca1—N3—C951.1 (3)C11—N4—C9—C8178.8 (3)
O10—Ca1—N3—C9124.4 (3)C7—C8—C9—N389.7 (4)
O9—Ca1—N3—C9121.9 (3)C7—C8—C9—N488.5 (4)
O1—Ca1—N3—C93.7 (4)C9—N3—C10—C110.0 (3)
O8—Ca1—N3—C9175.1 (3)Ca1—N3—C10—C11172.1 (2)
N1—Ca1—N3—C937.9 (3)C9—N3—C10—C12178.3 (3)
O11—Ca1—N3—C10117.1 (2)Ca1—N3—C10—C126.3 (3)
O10—Ca1—N3—C1043.8 (2)C9—N4—C11—C100.4 (3)
O9—Ca1—N3—C1069.9 (2)C9—N4—C11—C13178.7 (3)
O1—Ca1—N3—C10171.85 (18)N3—C10—C11—N40.3 (3)
O8—Ca1—N3—C106.88 (19)C12—C10—C11—N4178.3 (3)
N1—Ca1—N3—C10153.9 (2)N3—C10—C11—C13178.3 (3)
C3—N1—C1—C20.8 (3)C12—C10—C11—C133.7 (6)
Ca1—N1—C1—C2170.56 (19)Ca1—O8—C12—O7171.1 (2)
C3—N1—C1—C4180.0 (3)Ca1—O8—C12—C108.2 (4)
Ca1—N1—C1—C48.6 (3)C11—C10—C12—O8178.6 (3)
C3—N2—C2—C11.0 (3)N3—C10—C12—O80.8 (4)
C3—N2—C2—C5178.7 (3)C11—C10—C12—O70.6 (5)
N1—C1—C2—N20.1 (3)N3—C10—C12—O7178.5 (3)
C4—C1—C2—N2179.0 (3)N4—C11—C13—O50.5 (5)
N1—C1—C2—C5179.5 (3)C10—C11—C13—O5178.2 (3)
C4—C1—C2—C51.4 (6)N4—C11—C13—O6178.0 (3)
C1—N1—C3—N21.5 (3)C10—C11—C13—O60.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O13i0.861.942.778 (4)164
O10—H3W···O5ii0.86 (1)2.03 (2)2.839 (3)159 (4)
O10—H4W···O1iii0.86 (1)1.91 (1)2.768 (3)174 (3)
O9—H2W···O5iv0.86 (1)1.93 (1)2.784 (3)172 (4)
O9—H1W···O12v0.86 (1)1.97 (1)2.829 (4)174 (5)
O14—H11W···O12vi0.86 (1)2.17 (2)2.957 (4)152 (4)
O15—H13W···O2vi0.86 (1)1.93 (2)2.752 (3)159 (4)
O15—H14W···O8vii0.86 (1)1.97 (1)2.824 (3)179 (4)
O13—H9W···O15vi0.86 (1)2.13 (2)2.943 (4)158 (4)
O13—H10W···O14viii0.86 (1)2.00 (1)2.851 (4)173 (5)
O11—H6W···O6ii0.86 (1)1.94 (2)2.770 (3)161 (4)
O11—H5W···O4vi0.86 (1)1.90 (2)2.717 (3)160 (4)
O12—H7W···O9iii0.86 (1)2.03 (2)2.851 (3)160 (5)
N2—H2···O140.861.962.809 (3)169
O14—H12W···O150.86 (1)1.88 (1)2.740 (4)177 (5)
O6—H6···O70.821.642.462 (3)175
O3—H3···O20.821.672.487 (3)176
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z; (v) x1, y, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z; (viii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O13i0.861.942.778 (4)163.6
O10—H3W···O5ii0.855 (10)2.025 (17)2.839 (3)159 (4)
O10—H4W···O1iii0.859 (10)1.912 (11)2.768 (3)174 (3)
O9—H2W···O5iv0.861 (10)1.929 (12)2.784 (3)172 (4)
O9—H1W···O12v0.859 (10)1.973 (12)2.829 (4)174 (5)
O14—H11W···O12vi0.860 (10)2.17 (2)2.957 (4)152 (4)
O15—H13W···O2vi0.864 (10)1.927 (19)2.752 (3)159 (4)
O15—H14W···O8vii0.859 (10)1.965 (11)2.824 (3)179 (4)
O13—H9W···O15vi0.856 (10)2.13 (2)2.943 (4)158 (4)
O13—H10W···O14viii0.856 (10)1.999 (12)2.851 (4)173 (5)
O11—H6W···O6ii0.858 (10)1.944 (16)2.770 (3)161 (4)
O11—H5W···O4vi0.855 (10)1.897 (17)2.717 (3)160 (4)
O12—H7W···O9iii0.858 (10)2.03 (2)2.851 (3)160 (5)
N2—H2···O140.861.962.809 (3)168.5
O14—H12W···O150.862 (10)1.879 (11)2.740 (4)177 (5)
O6—H6···O70.821.642.462 (3)175.0
O3—H3···O20.821.672.487 (3)176.1
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z; (v) x1, y, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z; (viii) x, y+1, z+1.
Acknowledgements top

We gratefully acknowledge financial support by the Foundation of He'nan Key Science and Technology Research (Nos. 122102210414 and 122102210415), the Foundation of Henan Education Committee (No. 2010 A150003 and 2011B150001) and the Foundation of Henan University of Urban Construction (Nos. 2010JYB007 and 2010JYB008).

references
References top

Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.

Feng, X., Zhao, J. S., Liu, B., Wang, L. Y., Ng, S., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399–1408.

Li, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423–3431.

Li, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y., Niu, Y. Y. & Hou, H. W. (2010). Inorg. Chem. 49, 2600–2613.

Liu, X. F., Wang, L. Y., Ma, L. F. & Li, R. F. (2010). Chin. J. Struct. Chem. 29, 280–284.

Lu, W. G., Jiang, L. & Lu, T. B. (2010). Cryst. Growth Des. 10, 4310–4318.

Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Song, J. F., Zhou, R. S., Hu, T. P., Zhuo, C. & Wang, B. B. (2010). J. Coord. Chem. 63, 4201–4214.

Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662–1666.

Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776–3788.

Zheng, S. R., Cai, S. L., Pan, M., Fan, J., Xiao, T. T. & Zhang, W. G. (2011). CrystEngComm, 13, 883–888.

Zhu, Y., Wang, W. Y., Guo, M. W., Li, G. & Lu, H. J. (2011). Inorg. Chem. Commun. 14, 1432–1435.

Zhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299–1303.