supplementary materials


hy2558 scheme

Acta Cryst. (2012). E68, m1177    [ doi:10.1107/S1600536812035209 ]

catena-Poly[disilver(I)(Ag-Ag)-bis([mu]3-quinoline-3-carboxylato)-1:2:1'[kappa]3O:O':N;2:1'':2''[kappa]3N:O:O']

C.-B. Liu, Y. Cong and H.-Y. Sun

Abstract top

In the title compound, [Ag2(C10H6NO2)2]n, the AgI atom is coordinated by one N atom and two O atoms from three quinoline-3-carboxylate ligands in a T-shaped fashion, with an additional Ag...Ag distance of 2.9468 (6) Å. The ligands connect the AgI atoms into a double-chain structure along [010]. Weak Ag...O interactions [Ag...O = 2.802 (3) and 2.877 (4) Å] link the double-chains into a layer network parallel to (101). [pi]-[pi] interactions are also observed in the layer network [centroid-centroid distances = 3.780 (3) and 3.777 (3) Å].

Comment top

In recent years, the design and synthesis of metal-organic frameworks (MOFs) based on assembly of suitable and rigid building blocks have attracted great attention for their interesting structures and potential applications in catalysis, separation, gas storage and molecular recognition (Wei et al., 2006). Moreover, Ag(I) ion is easy to form short Ag–Ag contacts as well as ligand unsupported interactions, which have been proved to be two of the most important factors contributing to the formation of such complexes and special properties (Yilmaz et al., 2008). Much attention has been paid to Ag(I) ion as its d10 closed-shell electronic configuration. It demonstrates a dynamic range of coordinative geometries, including linear, trigonal-planar, tetrahedral and trigonal-pyramidal. In occasional, it also has examples of square-planar, pyramidal and octahedral geometries, and a tendency to form an argentophilic interaction, both of which may lead to discovery of novel structural motifs (Sun et al., 2010). It is well known that quinoline-3-carboxylic acid (HL) acts as a polyfunctional ligand in metal complexes and coordinates to metals by means of its carboxylate oxygen and a nitrogen atom, exhibiting different coordination modes, such as monodentate-N and monodentate-O, bis(monodentate), bidentate(N, O) and bridging form. In addition, HL also displays an extend π-system, which is beneficial for the formation of ππ interactions to generate high dimensional supramolecular architectures and further stabilize the network. Therefore, we selected silver ion and HL to obtain the title compound under hydrothermal conditions.

In the title compound, the AgI is coordinated by one N atom and two O atoms from three L ligands (Fig. 1, Table 1) and also forms an Ag···Ag contact (Baenziger et al., 1986; Yang et al., 2004). The distance of Ag1···Ag2 is 2.9468 (6) Å. It is shorter than the sum of the van der Waals radii of two silver(I) atoms (3.44 Å), thus the Ag—Ag interaction is found (Yeşilel et al., 2011; You et al., 2004). The bidentate bridging carboxylate group of the ligand connect two Ag atoms and the pyridine N atom links another Ag atom, leading to the formation of a one-dimensional double-chain structure (Fig. 2). The weak Ag···O interactions, with Ag1···O2i and Ag2···O1ii distances of 2.802 (3) and 2.877 (4) Å [symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z], link the double-chains into a layer network. ππ interactions are observed in the layer network [centroid–centroid distances = 3.780 (3) and 3.777 (3) Å].

Related literature top

For background to the design and applications of structures with metal-organic frameworks and of AgI complexes, see: Sun et al. (2010); Wei et al. (2006); Yilmaz et al. (2008). For related structures, see: Baenziger et al. (1986); Yang et al. (2004); Yeşilel et al. (2011); You et al. (2004).

Experimental top

HL was purchased commercially and used without further purification. A mixture of AgCl (14.33 mg, 0.1 mmol) and HL (17.30 mg, 0.1 mmol) was dissolved in a 10 ml of water with pH = 6. The resulting mixture was heated in a 15 ml Teflon-lined autoclave at 438 K for three days. Then the autoclave was slowly cooled to room temperature and colourless block-shaped crystals were obtained in a yield of 50%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.]
[Figure 2] Fig. 2. The one-dimensional double-chain of the title compound. H atoms have been omitted for clarity.
catena-Poly[disilver(I)(AgAg)-bis(µ3-quinoline-3- carboxylato)-1:2:1'κ3O:O':N;2:1'': 2''κ3N:O:O'] top
Crystal data top
[Ag2(C10H6NO2)2]Z = 2
Mr = 560.06F(000) = 544
Triclinic, P1Dx = 2.189 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0583 (15) ÅCell parameters from 7499 reflections
b = 8.4824 (15) Åθ = 1.6–27.5°
c = 12.934 (2) ŵ = 2.34 mm1
α = 93.225 (2)°T = 293 K
β = 94.812 (2)°Block, colourless
γ = 104.640 (2)°0.13 × 0.11 × 0.10 mm
V = 849.6 (3) Å3
Data collection top
Bruker APEX CCD
diffractometer
2962 independent reflections
Radiation source: fine-focus sealed tube2298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.745, Tmax = 0.792k = 1010
6197 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
2962 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.51 e Å3
168 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Ag2(C10H6NO2)2]γ = 104.640 (2)°
Mr = 560.06V = 849.6 (3) Å3
Triclinic, P1Z = 2
a = 8.0583 (15) ÅMo Kα radiation
b = 8.4824 (15) ŵ = 2.34 mm1
c = 12.934 (2) ÅT = 293 K
α = 93.225 (2)°0.13 × 0.11 × 0.10 mm
β = 94.812 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2298 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.792Rint = 0.027
6197 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.51 e Å3
S = 1.01Δρmin = 0.52 e Å3
2962 reflectionsAbsolute structure: ?
253 parametersFlack parameter: ?
168 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8357 (5)0.0050 (5)0.4189 (3)0.0298 (10)
H10.77300.01370.47640.036*
C20.8690 (5)0.1487 (5)0.3753 (3)0.0278 (10)
C30.9556 (5)0.1377 (5)0.2879 (3)0.0284 (10)
H30.97970.23020.25740.034*
C41.0077 (5)0.0126 (5)0.2442 (3)0.0281 (10)
C50.9753 (5)0.1526 (5)0.2963 (3)0.0268 (10)
C61.0337 (6)0.3077 (6)0.2576 (4)0.0335 (11)
H61.01330.39950.29160.040*
C71.1193 (6)0.3232 (6)0.1711 (4)0.0408 (12)
H71.16040.42600.14730.049*
C81.1461 (6)0.1846 (6)0.1173 (4)0.0413 (12)
H81.20100.19590.05670.050*
C91.0927 (6)0.0338 (6)0.1529 (4)0.0388 (12)
H91.11250.05640.11660.047*
C100.8127 (5)0.3042 (5)0.4268 (3)0.0297 (10)
C110.5510 (6)0.8739 (5)0.6646 (3)0.0298 (10)
H110.60060.88100.60210.036*
C120.5331 (5)1.0201 (5)0.7144 (3)0.0271 (10)
C130.4575 (5)1.0106 (5)0.8051 (3)0.0286 (10)
H130.44141.10430.83910.034*
C140.4036 (6)0.8582 (6)0.8472 (3)0.0309 (10)
C150.4289 (5)0.7163 (5)0.7920 (4)0.0298 (10)
C160.3802 (6)0.5640 (6)0.8339 (4)0.0391 (12)
H160.39520.47100.79840.047*
C170.3109 (7)0.5526 (7)0.9267 (4)0.0519 (14)
H170.28090.45170.95440.062*
C180.2839 (7)0.6908 (7)0.9811 (4)0.0540 (15)
H180.23590.68041.04400.065*
C190.3277 (6)0.8391 (6)0.9421 (4)0.0413 (12)
H190.30750.92940.97810.050*
C200.5961 (6)1.1778 (5)0.6657 (4)0.0302 (10)
N10.8868 (4)0.1405 (4)0.3842 (3)0.0287 (8)
N20.5033 (5)0.7289 (4)0.6994 (3)0.0306 (9)
O10.7023 (4)0.3102 (4)0.4894 (3)0.0389 (8)
O20.8812 (4)0.4181 (4)0.4039 (2)0.0372 (8)
O30.5866 (5)1.3064 (4)0.7133 (3)0.0479 (9)
O40.6565 (4)1.1679 (4)0.5802 (3)0.0428 (9)
Ag10.79527 (5)0.35203 (4)0.48083 (3)0.03910 (14)
Ag20.60900 (5)0.52274 (4)0.61650 (3)0.04425 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.027 (2)0.031 (2)0.0094 (19)0.0114 (19)0.0067 (19)
C20.030 (2)0.025 (2)0.030 (2)0.0087 (18)0.0055 (18)0.0059 (19)
C30.038 (2)0.022 (2)0.027 (2)0.0122 (18)0.0074 (18)0.0037 (18)
C40.030 (2)0.027 (2)0.028 (2)0.0090 (18)0.0047 (18)0.0029 (19)
C50.028 (2)0.027 (2)0.028 (2)0.0109 (18)0.0063 (18)0.0026 (18)
C60.039 (2)0.023 (2)0.041 (3)0.0095 (19)0.011 (2)0.009 (2)
C70.049 (3)0.033 (3)0.043 (3)0.010 (2)0.013 (2)0.014 (2)
C80.052 (3)0.042 (3)0.034 (2)0.013 (2)0.020 (2)0.008 (2)
C90.049 (3)0.033 (3)0.039 (3)0.015 (2)0.015 (2)0.004 (2)
C100.035 (2)0.026 (2)0.028 (2)0.0075 (19)0.0043 (19)0.0004 (19)
C110.039 (2)0.025 (2)0.028 (2)0.0107 (19)0.0117 (19)0.0057 (19)
C120.031 (2)0.022 (2)0.031 (2)0.0085 (18)0.0056 (18)0.0040 (19)
C130.039 (2)0.022 (2)0.028 (2)0.0117 (19)0.0066 (18)0.0001 (18)
C140.037 (2)0.028 (2)0.030 (2)0.0104 (19)0.0079 (19)0.0065 (19)
C150.030 (2)0.025 (2)0.036 (2)0.0079 (18)0.0079 (19)0.0067 (19)
C160.053 (3)0.027 (2)0.039 (3)0.011 (2)0.014 (2)0.006 (2)
C170.069 (3)0.040 (3)0.050 (3)0.012 (2)0.019 (3)0.017 (2)
C180.067 (3)0.053 (3)0.045 (3)0.014 (3)0.029 (3)0.014 (3)
C190.053 (3)0.037 (3)0.036 (3)0.013 (2)0.013 (2)0.004 (2)
C200.038 (2)0.021 (2)0.034 (2)0.0117 (19)0.008 (2)0.0045 (19)
N10.0348 (19)0.021 (2)0.031 (2)0.0072 (16)0.0088 (16)0.0006 (16)
N20.042 (2)0.023 (2)0.031 (2)0.0113 (16)0.0147 (17)0.0053 (16)
O10.0514 (19)0.0296 (18)0.0437 (19)0.0174 (15)0.0238 (16)0.0104 (15)
O20.0490 (18)0.0205 (17)0.0459 (19)0.0114 (14)0.0182 (16)0.0036 (15)
O30.078 (2)0.0253 (18)0.046 (2)0.0173 (17)0.0210 (18)0.0058 (16)
O40.061 (2)0.0273 (18)0.046 (2)0.0123 (15)0.0296 (17)0.0072 (15)
Ag10.0547 (3)0.0202 (2)0.0470 (3)0.01195 (18)0.01993 (19)0.01007 (18)
Ag20.0681 (3)0.0223 (2)0.0496 (3)0.0169 (2)0.0257 (2)0.01112 (19)
Geometric parameters (Å, º) top
C1—N11.315 (5)C12—C201.501 (6)
C1—C21.410 (6)C13—C141.411 (6)
C1—H10.9300C13—H130.9300
C2—C31.374 (6)C14—C191.416 (6)
C2—C101.495 (6)C14—C151.433 (6)
C3—C41.404 (6)C15—N21.381 (5)
C3—H30.9300C15—C161.406 (6)
C4—C91.412 (6)C16—C171.363 (7)
C4—C51.424 (6)C16—H160.9300
C5—N11.386 (5)C17—C181.407 (8)
C5—C61.416 (6)C17—H170.9300
C6—C71.359 (6)C18—C191.355 (7)
C6—H60.9300C18—H180.9300
C7—C81.405 (7)C19—H190.9300
C7—H70.9300C20—O31.245 (5)
C8—C91.361 (7)C20—O41.252 (5)
C8—H80.9300Ag1—N12.429 (3)
C9—H90.9300Ag1—O2i2.219 (3)
C10—O11.246 (5)Ag1—O4ii2.220 (3)
C10—O21.261 (5)Ag1—Ag22.9468 (6)
C11—N21.310 (5)Ag2—N22.373 (3)
C11—C121.410 (6)Ag2—O1i2.282 (3)
C11—H110.9300Ag2—O3ii2.258 (3)
C12—C131.364 (6)Ag2—Ag2iii3.3099 (10)
N1—C1—C2124.9 (4)N2—C15—C14120.5 (4)
N1—C1—H1117.6C16—C15—C14119.4 (4)
C2—C1—H1117.6C17—C16—C15120.0 (5)
C3—C2—C1117.8 (4)C17—C16—H16120.0
C3—C2—C10123.0 (4)C15—C16—H16120.0
C1—C2—C10119.2 (4)C16—C17—C18121.1 (5)
C2—C3—C4120.3 (4)C16—C17—H17119.4
C2—C3—H3119.9C18—C17—H17119.4
C4—C3—H3119.9C19—C18—C17120.3 (5)
C3—C4—C9124.0 (4)C19—C18—H18119.9
C3—C4—C5117.9 (4)C17—C18—H18119.9
C9—C4—C5118.1 (4)C18—C19—C14120.8 (5)
N1—C5—C6119.0 (4)C18—C19—H19119.6
N1—C5—C4121.5 (4)C14—C19—H19119.6
C6—C5—C4119.5 (4)O3—C20—O4125.6 (4)
C7—C6—C5120.4 (4)O3—C20—C12118.1 (4)
C7—C6—H6119.8O4—C20—C12116.2 (4)
C5—C6—H6119.8C1—N1—C5117.6 (4)
C6—C7—C8120.2 (5)C1—N1—Ag1113.6 (3)
C6—C7—H7119.9C5—N1—Ag1128.7 (3)
C8—C7—H7119.9C11—N2—C15118.1 (4)
C9—C8—C7120.8 (5)C11—N2—Ag2115.5 (3)
C9—C8—H8119.6C15—N2—Ag2125.0 (3)
C7—C8—H8119.6C10—O1—Ag2ii134.4 (3)
C8—C9—C4120.9 (4)C10—O2—Ag1ii117.0 (3)
C8—C9—H9119.6C20—O3—Ag2i115.2 (3)
C4—C9—H9119.6C20—O4—Ag1i133.5 (3)
O1—C10—O2125.3 (4)O2i—Ag1—O4ii161.54 (11)
O1—C10—C2117.1 (4)O2i—Ag1—N1107.52 (12)
O2—C10—C2117.6 (4)O4ii—Ag1—N190.23 (12)
N2—C11—C12125.2 (4)O2i—Ag1—Ag288.38 (8)
N2—C11—H11117.4O4ii—Ag1—Ag273.44 (8)
C12—C11—H11117.4N1—Ag1—Ag2162.81 (9)
C13—C12—C11117.9 (4)O3ii—Ag2—O1i157.36 (12)
C13—C12—C20123.0 (4)O3ii—Ag2—N2111.17 (12)
C11—C12—C20119.1 (4)O1i—Ag2—N290.66 (11)
C12—C13—C14119.9 (4)O3ii—Ag2—Ag185.21 (8)
C12—C13—H13120.1O1i—Ag2—Ag172.49 (8)
C14—C13—H13120.1N2—Ag2—Ag1162.51 (9)
C13—C14—C19123.2 (4)O3ii—Ag2—Ag2iii119.91 (9)
C13—C14—C15118.4 (4)O1i—Ag2—Ag2iii58.54 (9)
C19—C14—C15118.4 (4)N2—Ag2—Ag2iii100.68 (9)
N2—C15—C16120.1 (4)Ag1—Ag2—Ag2iii74.839 (19)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1.
Selected bond lengths (Å) top
Ag1—N12.429 (3)Ag2—N22.373 (3)
Ag1—O2i2.219 (3)Ag2—O1i2.282 (3)
Ag1—O4ii2.220 (3)Ag2—O3ii2.258 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Acknowledgements top

The authors thank Jiangsu University for supporting this research.

references
References top

Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505–1509.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sun, D., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Cryst. Growth Des. 10, 3699–3709.

Wei, X.-Y., Chu, W., Huang, R.-D., Zhang, S.-W., Li, H. & Zhu, Q.-L. (2006). Inorg. Chem. Commun. 9, 1161–1164.

Yang, S.-P., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m614–m616.

Yeşilel, O. Z., Günay, G. & Büyükgüngör, O. (2011). Polyhedron, 30, 364–371.

Yilmaz, V. T., Hamamci, S. & Kazak, C. (2008). J. Organomet. Chem. 693, 3885–3888.

You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863–m1865.