supplementary materials


hy2576 scheme

Acta Cryst. (2012). E68, m1143    [ doi:10.1107/S1600536812033648 ]

Dibromido(6,6'-dimethyl-2,2'-bipyridine-[kappa]2N,N')cadmium

S. A. Shirvan and S. Haydari Dezfuli

Abstract top

In the title compound, [CdBr2(C12H12N2)], the CdII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 6,6'-dimethyl-2,2'-bipyridine ligand and two terminal Br atoms. In the crystal, C-H...Br hydrogen bonds and [pi]-[pi] stacking interactions between the pyridine rings [centroid-centroid distance = 3.763 (5) Å] are present.

Comment top

Recently, we reported the synthesis and crystal structures of [Cd(5,5'-dmbpy)(µ-Br)2]n (Shirvan & Haydari Dezfuli, 2012a) and [CdBr2(4,4'-dmbpy)(DMSO)] (Shirvan & Haydari Dezfuli, 2012b) (5,5'-dmbpy = 5,5'-dimethyl-2,2'-bipyridine, 4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine, DMSO = dimethyl sulfoxide). 6,6'-Dimethyl-2,2'-bipyridine (6,6'-dmbipy) is a good bidentate ligand and numerous complexes with 6,6'-dmbipy have been prepared, such as that of zinc (Alizadeh, Kalateh, Ebadi et al., 2009; Alizadeh, Kalateh, Khoshtarkib et al., 2009; Alizadeh, Khoshtarkib et al., 2009), copper (Itoh et al., 2005), cadmium (Alizadeh et al., 2010), cobalt (Akbarzadeh Torbati et al., 2010), nickel (Kou et al., 2008), ruthenium (Onggo et al., 2005) and mercury (Alizadeh et al., 2011). We report herein the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the CdII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 6,6'-dimethyl-2,2'-bipyridine ligand and two terminal Br atoms. The crystal structure is stabilized by intermolecular C—H···Br hydrogen bonds (Table 1) and ππ contacts (Fig. 2) between the pyridine rings, Cg2···Cg3i [symmetry code: (i) -x, 1-y, -z. Cg2 and Cg3 are the centroids of the N1/C2–C6 ring and N2/C7–C11 ring], with a centroid–centroid distance of 3.763 (5) Å.

Related literature top

For related structures, see: Akbarzadeh Torbati et al. (2010); Alizadeh et al. (2010, 2011); Alizadeh, Kalateh, Ebadi et al. (2009); Alizadeh, Kalateh, Khoshtarkib et al. (2009); Alizadeh, Khoshtarkib et al. (2009); Itoh et al. (2005); Kou et al. (2008); Onggo et al. (2005); Shirvan & Haydari Dezfuli (2012a,b).

Experimental top

For the preparation of the title compound, a solution of 6,6'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CdBr2.4H2O (0.46 g, 1.33 mmol) in methanol (10 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMSO after one week (yield: 0.47 g, 77.4%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Dibromido(6,6'-dimethyl-2,2'-bipyridine-κ2N,N')cadmium top
Crystal data top
[CdBr2(C12H12N2)]F(000) = 864
Mr = 456.45Dx = 2.087 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11844 reflections
a = 7.7606 (11) Åθ = 2.3–26.0°
b = 10.3832 (17) ŵ = 6.98 mm1
c = 18.184 (2) ÅT = 298 K
β = 97.460 (11)°Block, colorless
V = 1452.8 (4) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2862 independent reflections
Radiation source: fine-focus sealed tube1945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.054, Tmax = 0.155k = 1212
11844 measured reflectionsl = 1922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max = 0.003
154 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[CdBr2(C12H12N2)]V = 1452.8 (4) Å3
Mr = 456.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7606 (11) ŵ = 6.98 mm1
b = 10.3832 (17) ÅT = 298 K
c = 18.184 (2) Å0.40 × 0.20 × 0.15 mm
β = 97.460 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
2862 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1945 reflections with I > 2σ(I)
Tmin = 0.054, Tmax = 0.155Rint = 0.098
11844 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.61 e Å3
S = 1.03Δρmin = 0.78 e Å3
2862 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1386 (14)0.4345 (10)0.2292 (5)0.081 (3)
H1A0.24940.39510.24440.098*
H1B0.05300.36890.21610.098*
H1C0.10550.48520.26930.098*
C20.1505 (10)0.5178 (8)0.1648 (5)0.060 (2)
C30.1116 (12)0.6486 (9)0.1659 (6)0.077 (3)
H30.07820.68610.20830.092*
C40.1230 (12)0.7210 (8)0.1044 (7)0.078 (3)
H40.09630.80830.10440.094*
C50.1750 (11)0.6642 (8)0.0409 (6)0.071 (3)
H50.18350.71330.00130.085*
C60.2136 (9)0.5334 (7)0.0417 (4)0.0483 (17)
C70.2699 (8)0.4638 (7)0.0232 (4)0.0461 (17)
C80.2878 (11)0.5254 (9)0.0896 (5)0.066 (2)
H80.26130.61240.09580.079*
C90.3445 (11)0.4568 (11)0.1454 (5)0.072 (3)
H90.35690.49690.19020.087*
C100.3835 (11)0.3288 (11)0.1359 (5)0.070 (3)
H100.42260.28180.17400.084*
C110.3646 (10)0.2703 (8)0.0699 (5)0.0543 (19)
C120.4037 (14)0.1324 (10)0.0560 (6)0.080 (3)
H12A0.30130.08910.04460.095*
H12B0.49440.12410.01500.095*
H12C0.44100.09450.09950.095*
N10.1993 (7)0.4635 (6)0.1027 (3)0.0470 (14)
N20.3092 (7)0.3379 (6)0.0136 (3)0.0448 (13)
Cd10.27194 (7)0.25065 (5)0.09801 (3)0.04813 (18)
Br10.01860 (13)0.10203 (9)0.10288 (6)0.0775 (3)
Br20.54796 (12)0.18801 (10)0.17765 (5)0.0693 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.105 (7)0.093 (7)0.049 (5)0.005 (6)0.024 (5)0.017 (5)
C20.053 (5)0.056 (5)0.069 (6)0.005 (4)0.001 (4)0.020 (4)
C30.074 (6)0.058 (6)0.095 (8)0.011 (5)0.002 (5)0.019 (5)
C40.064 (5)0.040 (5)0.123 (9)0.016 (4)0.022 (6)0.027 (5)
C50.063 (5)0.042 (4)0.099 (7)0.005 (4)0.023 (5)0.011 (5)
C60.042 (4)0.039 (4)0.060 (5)0.002 (3)0.010 (3)0.004 (3)
C70.039 (4)0.049 (4)0.048 (4)0.011 (3)0.003 (3)0.011 (3)
C80.062 (5)0.069 (6)0.066 (6)0.011 (4)0.002 (4)0.023 (5)
C90.066 (5)0.103 (8)0.048 (5)0.017 (5)0.006 (4)0.020 (5)
C100.060 (5)0.109 (8)0.042 (4)0.019 (5)0.007 (4)0.003 (5)
C110.055 (4)0.060 (5)0.048 (4)0.002 (4)0.009 (4)0.005 (4)
C120.093 (7)0.079 (7)0.067 (6)0.007 (5)0.013 (5)0.019 (5)
N10.042 (3)0.048 (3)0.051 (4)0.001 (3)0.002 (3)0.007 (3)
N20.047 (3)0.046 (3)0.041 (3)0.008 (3)0.004 (3)0.001 (3)
Cd10.0576 (3)0.0421 (3)0.0456 (3)0.0049 (3)0.0102 (2)0.0069 (2)
Br10.0804 (6)0.0631 (6)0.0900 (7)0.0163 (5)0.0155 (5)0.0197 (5)
Br20.0661 (5)0.0808 (6)0.0597 (5)0.0161 (5)0.0033 (4)0.0171 (5)
Geometric parameters (Å, º) top
C1—C21.469 (13)C8—C91.358 (14)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.369 (15)
C1—H1C0.9600C9—H90.9300
C2—N11.360 (10)C10—C111.369 (12)
C2—C31.392 (13)C10—H100.9300
C3—C41.360 (15)C11—N21.357 (10)
C3—H30.9300C11—C121.479 (12)
C4—C51.402 (14)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—C61.390 (11)C12—H12C0.9600
C5—H50.9300N1—Cd12.285 (6)
C6—N11.341 (10)N2—Cd12.274 (6)
C6—C71.498 (11)Cd1—Br12.5099 (11)
C7—N21.349 (9)Cd1—Br22.5106 (11)
C7—C81.389 (11)
C2—C1—H1A109.5C8—C9—C10120.1 (8)
C2—C1—H1B109.5C8—C9—H9119.9
H1A—C1—H1B109.5C10—C9—H9119.9
C2—C1—H1C109.5C9—C10—C11119.6 (9)
H1A—C1—H1C109.5C9—C10—H10120.2
H1B—C1—H1C109.5C11—C10—H10120.2
N1—C2—C3120.1 (9)N2—C11—C10120.8 (8)
N1—C2—C1118.2 (7)N2—C11—C12116.8 (7)
C3—C2—C1121.8 (9)C10—C11—C12122.4 (8)
C4—C3—C2119.3 (10)C11—C12—H12A109.5
C4—C3—H3120.3C11—C12—H12B109.5
C2—C3—H3120.3H12A—C12—H12B109.5
C3—C4—C5120.1 (8)C11—C12—H12C109.5
C3—C4—H4119.9H12A—C12—H12C109.5
C5—C4—H4119.9H12B—C12—H12C109.5
C6—C5—C4119.1 (9)C6—N1—C2121.6 (7)
C6—C5—H5120.5C6—N1—Cd1116.5 (5)
C4—C5—H5120.5C2—N1—Cd1121.9 (5)
N1—C6—C5119.8 (8)C7—N2—C11119.4 (6)
N1—C6—C7117.0 (6)C7—N2—Cd1116.7 (5)
C5—C6—C7123.1 (8)C11—N2—Cd1123.8 (5)
N2—C7—C8120.9 (7)N2—Cd1—N173.0 (2)
N2—C7—C6116.7 (6)N2—Cd1—Br1117.85 (15)
C8—C7—C6122.4 (7)N1—Cd1—Br1113.28 (14)
C9—C8—C7119.1 (9)N2—Cd1—Br2114.84 (15)
C9—C8—H8120.4N1—Cd1—Br2115.17 (15)
C7—C8—H8120.4Br1—Cd1—Br2115.72 (4)
N1—C2—C3—C40.0 (13)C3—C2—N1—Cd1178.3 (6)
C1—C2—C3—C4179.3 (9)C1—C2—N1—Cd12.4 (10)
C2—C3—C4—C50.6 (15)C8—C7—N2—C110.9 (10)
C3—C4—C5—C60.3 (14)C6—C7—N2—C11178.6 (7)
C4—C5—C6—N10.6 (12)C8—C7—N2—Cd1179.7 (5)
C4—C5—C6—C7179.9 (7)C6—C7—N2—Cd12.6 (7)
N1—C6—C7—N23.0 (9)C10—C11—N2—C70.9 (11)
C5—C6—C7—N2177.7 (7)C12—C11—N2—C7179.4 (7)
N1—C6—C7—C8179.3 (7)C10—C11—N2—Cd1179.7 (6)
C5—C6—C7—C80.0 (11)C12—C11—N2—Cd10.6 (10)
N2—C7—C8—C90.4 (12)C7—N2—Cd1—N11.2 (4)
C6—C7—C8—C9178.0 (7)C11—N2—Cd1—N1180.0 (6)
C7—C8—C9—C100.1 (13)C7—N2—Cd1—Br1106.6 (4)
C8—C9—C10—C110.2 (13)C11—N2—Cd1—Br172.2 (6)
C9—C10—C11—N20.6 (13)C7—N2—Cd1—Br2111.6 (4)
C9—C10—C11—C12179.8 (8)C11—N2—Cd1—Br269.6 (6)
C5—C6—N1—C21.2 (11)C6—N1—Cd1—N20.5 (5)
C7—C6—N1—C2179.4 (6)C2—N1—Cd1—N2178.0 (6)
C5—C6—N1—Cd1178.8 (5)C6—N1—Cd1—Br1114.1 (5)
C7—C6—N1—Cd11.9 (8)C2—N1—Cd1—Br168.4 (6)
C3—C2—N1—C60.9 (11)C6—N1—Cd1—Br2109.5 (5)
C1—C2—N1—C6179.8 (8)C2—N1—Cd1—Br268.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br1i0.962.903.848 (10)171
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br1i0.962.903.848 (10)171
Symmetry code: (i) x, y+1/2, z+1/2.
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

references
References top

Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284.

Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m1024.

Alizadeh, R., Kalateh, K., Ebadi, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1250.

Alizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439–m1440.

Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.

Alizadeh, R., Seifi, S. & Amani, V. (2011). Acta Cryst. E67, m305.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Itoh, S., Kishikawa, N., Suzuki, T. & Takagi, H. D. (2005). Dalton Trans. pp. 1066–1078.

Kou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396–2406.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m846.

Shirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m1006–m1007.