supplementary materials


ng5281 scheme

Acta Cryst. (2012). E68, m1140    [ doi:10.1107/S160053681203111X ]

catena-Poly[[(1,3-dimethylimidazolin-2-one-[kappa]N)(1,10-phenanthroline-[kappa]2N,N')copper(II)]-[mu]-furan-2,5-dicarboxylato-[kappa]2O2:O5]

Y.-F. Li, Y. Xu, X.-L. Qin, Y.-P. Yuan and W.-Y. Gao

Abstract top

The polymeric title compound, [Cu(C6H2O5)(C12H8N2)(C5H10N2O)]n, is composed of an infinite chain formed along [100] by linking the (1,3-dimethylimidazolin-2-one)(1,10-phenanthroline)copper(II) units with two O atoms of two carboxylate groups of the furan-2,5-dicarboxylate ligand. The CuII atom, which lies on a twofold rotation axis, displays a square-pyramidal coordination. The dihedral angles of the 1,10-phenanthroline ligand with respect to the furan rings of the carboxylate anions that are connected to the metal atom are 62.18 (11) and 88.27 (12)°.

Comment top

Recently, we utilized furan-2,5-dicarboxylate anion as the ligand to synthesize MOFs (Li et al., 2012a,b). In this work, we report a chainlike compound, [Cu(C5H10N2O)(C12H8N2)(C6H2O5)]n (Scheme I), is structurally determined.

The asymmetric unit of (I) is consists of one Cu(II) cation, one furan-2,5-dicarboxylate anion, one 1,3-dimethyl-2-imidazolinone molecule and one 1,10-phenanthroline molecule (Fig.1). The Cu atom is coordinated by two carboxylate O atoms, two N atoms of one C12H8N2 and one nitrogen of from C5H10N2O. The geometry is a square pyramid. The furan-2,5-dicarboxylate shows a µ2:η1;η1 coordinated mode. The dihedral angles of C12H8N2 with respect to the furan rings of the carboxylates that are coordinated to the same Cu atom are 62.18 (11)° and 88.27 (12)° (Fig. 1).

The Cu atom is linked by two furan-2,5-dicarboxylates to give rise to an infinite chain (Fig.2).

Related literature top

For related structures, see: Li, et al. (2012a,b).

Experimental top

Furan-2,5-dicarboxylic acid (0.0156 g, 0.10 mmol), Cu(NO3)2.6H2O (0.0298 g, 0.10 mmol), and C12H8N2 (0.0198, 0.11 mmol) were dissolved in DMI (5 ml, 48 mmol) under stirring. The mixture with molar ratio of 1 furan-2,5-dicarboxylic acid: 1 Cu(NO3)2.6H2O: 1.1 C12H8N2: 480 DMI was heated at 393 K for 2 days. Blue block were collected as a single phase.

Refinement top

The carbon H-atoms were placed in calculated positions (C—H (furan ring and phen ring) = 0.93 Å, C—H (CH2) = 0.97 Å, C—H (CH3) = 0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 0.5 + x, y, 0.5 - z.]
[Figure 2] Fig. 2. The stick plot of (I), displaying the infinite chain formed by linking the Cu with two oxygen atoms of two carboxyls of furan-2,5-dicarboxylate.
catena-Poly[[(1,3-dimethylimidazolin-2-one-κN)(1,10- phenanthroline-κ2N,N')copper(II)]-µ-furan-2,5-dicarboxylato- κ2O2:O5] top
Crystal data top
[Cu(C6H2O5)(C12H8N2)(C5H10N2O)]F(000) = 2104
Mr = 511.98Dx = 1.602 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2000 reflections
a = 15.620 (3) Åθ = 3.0–25.0°
b = 14.598 (3) ŵ = 1.08 mm1
c = 18.616 (4) ÅT = 293 K
V = 4244.8 (15) Å3Block, blue
Z = 80.10 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3727 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.900, Tmax = 0.900l = 2220
30193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2947P]
where P = (Fo2 + 2Fc2)/3
3727 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C6H2O5)(C12H8N2)(C5H10N2O)]V = 4244.8 (15) Å3
Mr = 511.98Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.620 (3) ŵ = 1.08 mm1
b = 14.598 (3) ÅT = 293 K
c = 18.616 (4) Å0.10 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3727 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2376 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.900Rint = 0.110
30193 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.46 e Å3
S = 1.04Δρmin = 0.37 e Å3
3727 reflectionsAbsolute structure: ?
309 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24404 (3)0.39844 (3)0.43722 (2)0.03211 (16)
O10.14532 (17)0.4367 (2)0.38161 (13)0.0416 (7)
O20.12024 (19)0.2971 (2)0.33748 (15)0.0486 (8)
O30.00981 (17)0.36718 (18)0.25302 (14)0.0359 (6)
O40.17851 (18)0.4375 (2)0.13743 (13)0.0427 (7)
O50.12344 (19)0.2972 (2)0.15283 (14)0.0457 (8)
O60.36449 (19)0.5888 (2)0.54050 (16)0.0542 (8)
N10.3387 (2)0.3743 (2)0.50900 (16)0.0323 (8)
N20.1712 (2)0.3470 (2)0.51765 (16)0.0331 (8)
N30.2429 (2)0.5747 (3)0.60884 (18)0.0493 (9)
N40.2290 (2)0.5799 (2)0.48911 (17)0.0411 (9)
C10.1065 (2)0.3789 (3)0.34036 (19)0.0331 (9)
C20.0400 (2)0.4234 (3)0.29553 (19)0.0355 (10)
C30.0156 (3)0.5122 (3)0.2869 (2)0.0438 (11)
H30.03920.56320.30940.053*
C40.0534 (3)0.5117 (3)0.2366 (2)0.0434 (11)
H40.08330.56260.22000.052*
C50.0672 (3)0.4228 (3)0.21737 (19)0.0355 (10)
C60.1268 (2)0.3795 (3)0.16585 (19)0.0337 (10)
C70.4221 (3)0.3874 (3)0.5029 (2)0.0430 (10)
H70.44320.41250.46050.052*
C80.4805 (3)0.3649 (3)0.5581 (2)0.0500 (12)
H80.53910.37190.55110.060*
C90.4493 (3)0.3325 (3)0.6221 (2)0.0471 (12)
H90.48680.31780.65910.057*
C100.3614 (3)0.3216 (3)0.6314 (2)0.0386 (10)
C110.3216 (3)0.2927 (3)0.6978 (2)0.0478 (11)
H110.35580.28090.73770.057*
C120.2360 (3)0.2825 (3)0.7033 (2)0.0481 (12)
H120.21230.26520.74700.058*
C130.1811 (3)0.2980 (3)0.6430 (2)0.0394 (10)
C140.0921 (3)0.2848 (3)0.6432 (2)0.0459 (11)
H140.06480.26530.68480.055*
C150.0454 (3)0.3007 (3)0.5821 (2)0.0486 (12)
H150.01340.29070.58160.058*
C160.0877 (3)0.3324 (3)0.5202 (2)0.0417 (11)
H160.05540.34360.47920.050*
C170.2179 (3)0.3287 (2)0.5782 (2)0.0324 (9)
C180.3083 (3)0.3418 (3)0.57286 (19)0.0323 (9)
C190.2874 (3)0.5825 (3)0.5464 (2)0.0400 (10)
C200.1433 (3)0.5936 (3)0.5180 (2)0.0526 (12)
H20A0.10180.55560.49320.063*
H20B0.12600.65720.51420.063*
C210.1525 (3)0.5647 (3)0.5963 (3)0.0528 (12)
H21A0.11960.60440.62770.063*
H21B0.13430.50190.60330.063*
C220.2507 (3)0.6290 (3)0.4228 (2)0.0554 (12)
H22A0.24150.69340.42960.066*
H22B0.21520.60730.38430.066*
H22C0.30980.61830.41120.066*
C230.2837 (3)0.5516 (3)0.6760 (2)0.0618 (15)
H23A0.27340.48830.68690.074*
H23B0.26070.58920.71360.074*
H23C0.34420.56210.67210.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0273 (3)0.0421 (3)0.0270 (2)0.0001 (2)0.0005 (2)0.0016 (2)
O10.0385 (17)0.0466 (17)0.0397 (15)0.0005 (14)0.0093 (13)0.0014 (14)
O20.048 (2)0.049 (2)0.0492 (19)0.0075 (16)0.0027 (14)0.0014 (15)
O30.0321 (16)0.0415 (15)0.0342 (14)0.0000 (13)0.0061 (12)0.0016 (14)
O40.0398 (17)0.0527 (19)0.0358 (15)0.0101 (14)0.0112 (13)0.0074 (14)
O50.054 (2)0.0447 (19)0.0387 (16)0.0043 (15)0.0034 (14)0.0004 (14)
O60.0372 (19)0.064 (2)0.062 (2)0.0037 (16)0.0009 (15)0.0073 (16)
N10.0288 (19)0.0338 (19)0.0345 (18)0.0003 (14)0.0025 (14)0.0018 (15)
N20.031 (2)0.037 (2)0.0317 (18)0.0033 (15)0.0017 (15)0.0043 (15)
N30.047 (2)0.057 (2)0.0432 (19)0.004 (2)0.0001 (19)0.0054 (17)
N40.039 (2)0.047 (2)0.0373 (18)0.0009 (16)0.0022 (15)0.0010 (17)
C10.030 (2)0.043 (3)0.027 (2)0.0016 (19)0.0059 (16)0.0017 (19)
C20.027 (2)0.052 (3)0.028 (2)0.0020 (19)0.0009 (16)0.0091 (19)
C30.041 (3)0.047 (3)0.043 (2)0.001 (2)0.006 (2)0.004 (2)
C40.050 (3)0.040 (3)0.040 (2)0.006 (2)0.008 (2)0.002 (2)
C50.030 (2)0.048 (3)0.028 (2)0.0077 (19)0.0003 (17)0.0025 (19)
C60.027 (2)0.050 (3)0.024 (2)0.001 (2)0.0043 (16)0.0016 (19)
C70.033 (2)0.055 (3)0.041 (2)0.002 (2)0.0002 (18)0.004 (2)
C80.031 (2)0.064 (3)0.055 (3)0.004 (2)0.003 (2)0.007 (3)
C90.048 (3)0.049 (3)0.045 (3)0.009 (2)0.014 (2)0.004 (2)
C100.046 (3)0.034 (2)0.035 (2)0.008 (2)0.005 (2)0.0051 (19)
C110.070 (3)0.038 (3)0.035 (2)0.006 (2)0.006 (2)0.002 (2)
C120.067 (4)0.044 (3)0.033 (2)0.002 (2)0.009 (2)0.004 (2)
C130.056 (3)0.029 (2)0.033 (2)0.006 (2)0.010 (2)0.0004 (18)
C140.053 (3)0.036 (2)0.049 (3)0.008 (2)0.024 (2)0.002 (2)
C150.038 (3)0.049 (3)0.059 (3)0.009 (2)0.015 (2)0.010 (2)
C160.034 (3)0.050 (3)0.041 (2)0.004 (2)0.0025 (19)0.003 (2)
C170.038 (2)0.023 (2)0.036 (2)0.0011 (16)0.0038 (17)0.0009 (17)
C180.036 (2)0.031 (2)0.030 (2)0.0029 (17)0.0019 (18)0.0036 (18)
C190.043 (3)0.028 (2)0.048 (3)0.0004 (18)0.003 (2)0.0043 (19)
C200.039 (3)0.052 (3)0.067 (3)0.009 (2)0.002 (2)0.016 (2)
C210.049 (3)0.045 (3)0.064 (3)0.004 (2)0.013 (2)0.009 (2)
C220.065 (3)0.048 (3)0.053 (3)0.004 (3)0.000 (3)0.003 (2)
C230.088 (4)0.051 (3)0.046 (3)0.004 (3)0.007 (3)0.005 (2)
Geometric parameters (Å, º) top
Cu1—O4i1.929 (3)C7—H70.9300
Cu1—O11.939 (3)C8—C91.371 (6)
Cu1—N12.024 (3)C8—H80.9300
Cu1—N22.025 (3)C9—C101.394 (6)
Cu1—N42.829 (3)C9—H90.9300
O1—C11.292 (5)C10—C181.400 (5)
O2—C11.214 (5)C10—C111.448 (6)
O3—C51.380 (4)C11—C121.349 (6)
O3—C21.380 (5)C11—H110.9300
O4—C61.284 (5)C12—C131.431 (6)
O4—Cu1ii1.929 (3)C12—H120.9300
O5—C61.228 (5)C13—C141.402 (6)
O6—C191.213 (5)C13—C171.410 (5)
N1—C71.321 (5)C14—C151.371 (6)
N1—C181.366 (5)C14—H140.9300
N2—C161.323 (5)C15—C161.405 (6)
N2—C171.369 (5)C15—H150.9300
N3—C191.360 (5)C16—H160.9300
N3—C211.438 (5)C17—C181.428 (6)
N3—C231.443 (5)C20—C211.524 (6)
N4—C191.403 (5)C20—H20A0.9700
N4—C201.457 (5)C20—H20B0.9700
N4—C221.467 (5)C21—H21A0.9700
C1—C21.483 (5)C21—H21B0.9700
C2—C31.360 (6)C22—H22A0.9600
C3—C41.428 (5)C22—H22B0.9600
C3—H30.9300C22—H22C0.9600
C4—C51.363 (6)C23—H23A0.9600
C4—H40.9300C23—H23B0.9600
C5—C61.479 (5)C23—H23C0.9600
C7—C81.412 (6)
O4i—Cu1—O191.66 (12)C9—C10—C18117.6 (4)
O4i—Cu1—N193.94 (12)C9—C10—C11124.2 (4)
O1—Cu1—N1169.56 (12)C18—C10—C11118.1 (4)
O4i—Cu1—N2174.20 (13)C12—C11—C10121.5 (4)
O1—Cu1—N293.14 (12)C12—C11—H11119.3
N1—Cu1—N281.83 (13)C10—C11—H11119.3
O4i—Cu1—N491.21 (11)C11—C12—C13121.2 (4)
O1—Cu1—N481.19 (11)C11—C12—H12119.4
N1—Cu1—N489.88 (11)C13—C12—H12119.4
N2—Cu1—N492.75 (11)C14—C13—C17116.7 (4)
C1—O1—Cu1120.1 (3)C14—C13—C12124.8 (4)
C5—O3—C2107.0 (3)C17—C13—C12118.5 (4)
C6—O4—Cu1ii119.8 (3)C15—C14—C13120.1 (4)
C7—N1—C18117.9 (3)C15—C14—H14119.9
C7—N1—Cu1129.6 (3)C13—C14—H14119.9
C18—N1—Cu1112.4 (3)C14—C15—C16119.1 (4)
C16—N2—C17117.7 (4)C14—C15—H15120.5
C16—N2—Cu1129.9 (3)C16—C15—H15120.5
C17—N2—Cu1112.4 (3)N2—C16—C15123.1 (4)
C19—N3—C21111.8 (4)N2—C16—H16118.5
C19—N3—C23122.3 (4)C15—C16—H16118.5
C21—N3—C23123.4 (4)N2—C17—C13123.3 (4)
C19—N4—C20108.2 (3)N2—C17—C18116.4 (4)
C19—N4—C22118.4 (4)C13—C17—C18120.4 (4)
C20—N4—C22117.1 (4)N1—C18—C10123.0 (4)
C19—N4—Cu1103.4 (2)N1—C18—C17116.8 (3)
C20—N4—Cu1109.3 (3)C10—C18—C17120.2 (4)
C22—N4—Cu198.7 (2)O6—C19—N3126.3 (4)
O2—C1—O1125.9 (4)O6—C19—N4125.4 (4)
O2—C1—C2122.0 (4)N3—C19—N4108.4 (4)
O1—C1—C2112.1 (4)N4—C20—C21103.2 (4)
C3—C2—O3109.9 (4)N4—C20—H20A111.1
C3—C2—C1132.9 (4)C21—C20—H20A111.1
O3—C2—C1117.2 (4)N4—C20—H20B111.1
C2—C3—C4106.5 (4)C21—C20—H20B111.1
C2—C3—H3126.7H20A—C20—H20B109.1
C4—C3—H3126.7N3—C21—C20102.7 (4)
C5—C4—C3107.2 (4)N3—C21—H21A111.2
C5—C4—H4126.4C20—C21—H21A111.2
C3—C4—H4126.4N3—C21—H21B111.2
C4—C5—O3109.3 (3)C20—C21—H21B111.2
C4—C5—C6132.6 (4)H21A—C21—H21B109.1
O3—C5—C6118.0 (4)N4—C22—H22A109.5
O5—C6—O4126.3 (4)N4—C22—H22B109.5
O5—C6—C5121.3 (4)H22A—C22—H22B109.5
O4—C6—C5112.4 (4)N4—C22—H22C109.5
N1—C7—C8122.7 (4)H22A—C22—H22C109.5
N1—C7—H7118.7H22B—C22—H22C109.5
C8—C7—H7118.7N3—C23—H23A109.5
C9—C8—C7118.9 (4)N3—C23—H23B109.5
C9—C8—H8120.5H23A—C23—H23B109.5
C7—C8—H8120.5N3—C23—H23C109.5
C8—C9—C10119.8 (4)H23A—C23—H23C109.5
C8—C9—H9120.1H23B—C23—H23C109.5
C10—C9—H9120.1
O4i—Cu1—O1—C193.0 (3)Cu1—N1—C7—C8178.5 (3)
N1—Cu1—O1—C1144.6 (6)N1—C7—C8—C93.5 (7)
N2—Cu1—O1—C183.8 (3)C7—C8—C9—C100.6 (7)
N4—Cu1—O1—C1176.1 (3)C8—C9—C10—C182.2 (6)
O4i—Cu1—N1—C72.9 (4)C8—C9—C10—C11176.6 (4)
O1—Cu1—N1—C7119.4 (7)C9—C10—C11—C12179.3 (4)
N2—Cu1—N1—C7178.9 (4)C18—C10—C11—C122.0 (6)
N4—Cu1—N1—C788.3 (4)C10—C11—C12—C131.4 (7)
O4i—Cu1—N1—C18178.8 (3)C11—C12—C13—C14176.9 (4)
O1—Cu1—N1—C1858.9 (8)C11—C12—C13—C173.1 (6)
N2—Cu1—N1—C182.8 (3)C17—C13—C14—C150.7 (6)
N4—Cu1—N1—C1890.0 (3)C12—C13—C14—C15179.3 (4)
O1—Cu1—N2—C1610.7 (4)C13—C14—C15—C161.6 (6)
N1—Cu1—N2—C16178.5 (4)C17—N2—C16—C151.1 (6)
N4—Cu1—N2—C1692.0 (4)Cu1—N2—C16—C15176.3 (3)
O1—Cu1—N2—C17166.8 (3)C14—C15—C16—N20.7 (7)
N1—Cu1—N2—C174.0 (3)C16—N2—C17—C132.0 (6)
N4—Cu1—N2—C1785.5 (3)Cu1—N2—C17—C13175.8 (3)
O4i—Cu1—N4—C1997.5 (3)C16—N2—C17—C18177.6 (4)
O1—Cu1—N4—C19171.0 (3)Cu1—N2—C17—C184.5 (4)
N1—Cu1—N4—C193.6 (3)C14—C13—C17—N21.1 (6)
N2—Cu1—N4—C1978.3 (3)C12—C13—C17—N2178.9 (3)
O4i—Cu1—N4—C20147.4 (3)C14—C13—C17—C18178.5 (4)
O1—Cu1—N4—C2055.9 (3)C12—C13—C17—C181.5 (6)
N1—Cu1—N4—C20118.6 (3)C7—N1—C18—C100.2 (6)
N2—Cu1—N4—C2036.8 (3)Cu1—N1—C18—C10178.8 (3)
O4i—Cu1—N4—C2224.6 (3)C7—N1—C18—C17179.7 (4)
O1—Cu1—N4—C2266.9 (3)Cu1—N1—C18—C171.2 (4)
N1—Cu1—N4—C22118.5 (3)C9—C10—C18—N12.4 (6)
N2—Cu1—N4—C22159.7 (3)C11—C10—C18—N1176.4 (4)
Cu1—O1—C1—O28.0 (5)C9—C10—C18—C17177.6 (4)
Cu1—O1—C1—C2172.7 (2)C11—C10—C18—C173.6 (6)
C5—O3—C2—C30.4 (4)N2—C17—C18—N12.3 (5)
C5—O3—C2—C1179.2 (3)C13—C17—C18—N1178.1 (3)
O2—C1—C2—C3176.7 (4)N2—C17—C18—C10177.8 (3)
O1—C1—C2—C34.0 (6)C13—C17—C18—C101.9 (6)
O2—C1—C2—O33.8 (5)C21—N3—C19—O6177.5 (4)
O1—C1—C2—O3175.5 (3)C23—N3—C19—O614.8 (7)
O3—C2—C3—C40.2 (5)C21—N3—C19—N41.1 (5)
C1—C2—C3—C4179.3 (4)C23—N3—C19—N4163.8 (4)
C2—C3—C4—C50.0 (5)C20—N4—C19—O6166.9 (4)
C3—C4—C5—O30.3 (5)C22—N4—C19—O630.6 (6)
C3—C4—C5—C6177.4 (4)Cu1—N4—C19—O677.2 (4)
C2—O3—C5—C40.4 (4)C20—N4—C19—N314.4 (4)
C2—O3—C5—C6178.0 (3)C22—N4—C19—N3150.8 (4)
Cu1ii—O4—C6—O53.8 (5)Cu1—N4—C19—N3101.4 (3)
Cu1ii—O4—C6—C5175.0 (2)C19—N4—C20—C2122.9 (4)
C4—C5—C6—O5174.0 (4)C22—N4—C20—C21159.9 (4)
O3—C5—C6—O52.8 (5)Cu1—N4—C20—C2189.0 (3)
C4—C5—C6—O44.8 (6)C19—N3—C21—C2015.0 (5)
O3—C5—C6—O4178.3 (3)C23—N3—C21—C20177.5 (4)
C18—N1—C7—C83.2 (6)N4—C20—C21—N322.3 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.
Acknowledgements top

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

references
References top

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Li, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445.

Li, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.