supplementary materials


vn2048 scheme

Acta Cryst. (2012). E68, m1186    [ doi:10.1107/S1600536812035337 ]

Tetrabutylammonium tetrakis(trimethylsilanolato-[kappa]O)ferrate(III)

M. Hay, R. Staples and A. Lee

Abstract top

In the title salt, (C16H36N)[Fe(C3H9OSi)4], the cation contains a central N atom bonded to four n-butyl alkyl groups in a tetrahedral arrangement, while the anion contains a central FeIII atom tetrahedrally coordinated by four trimethylsilanolate ligands.

Comment top

Over the past decade, Hay et al. reported on the structural characterization of numerous tetrabutylammonium iron (III) containing silsesquioxane compounds (Hay et al., 2003; Hay & Geib, 2007, Hay et al., 2009). In order to make a more complete structural study of these compounds, it was useful to have structural data on an analogous tetrabutylammonium iron (III) silanolato compound – the title compound (Fig. 1). Its structural arrangement contains a pair of tetrabutylammonium cations and tetrakistrimethylsilanolato ferrate (III) anions in a triclinic unit cell (Fig. 2). The tetrabutylammonium cation, C16H36N+, consists of a tetrahedrally arranged central nitrogen atom, with N—C bond lengths in the range of 1.515 (2)–1.520 (2) Å and C—N—C bond angles in the range of 105.74 (13)–111.41 (14)°. The complex anion, C12H36FeO4Si4-, contains a four coordinate FeIII atom with a tetrahedral arrangement of four trimethylsilanolato ligands. The O—Fe—O bond angles are 105.17 (6)–112.58 (6)°. The Fe—O bond lengths are in the range of 1.8515 (14)–1.8608 (13) Å.

Related literature top

For general background to the structural characterization of silsesquioxane compounds containing tetrabutylammonium iron(III), see: Hay & Geib (2007); Hay et al. (2003, 2009). For details of the synthesis, see: Shapley et al. (2003).

Experimental top

The following synthetic protocol is adapted from the previously reported procedure (Shapley, et al., 2003). A yellow solution of [C16H36N][FeCl4] (1.136 mmol, 0.5000 g) in dichloromethane (10 ml) was treated with four equivalents of solid sodium trimethlysilanate (4.544 mmol, 0.5098 g). Immediately, the yellow solution turned red due to the formation of a dark red precipitate. The reaction mixture was stirred for 40 minutes before the precipitate was removed by filtration through celite. The resulting pale green filtrate was concentrated under reduced pressure to give a pale green powder. The powder was extracted with diethyl ether and filtered to remove any insoluble material. Hexanes were added to the diethyl ether filtrate and the sample was stored at 243 K for about 30 minutes before colorless block crystals formed which were analyzed.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model. C—H(aromatic) = 0.94 Å and Uiso(H) = 1.2Ueq(C); C—H (alaphatic) = 0.99 Å and Uiso(H) = 1.2Ueq(C); CH2 = 0.98 Å and Uiso(H) = 1.2Ueq(C); CH3 = 0.97 Å and Uiso(H) = 1.5Ueq(C); N—H = 0.86 (0.92) Å and Uiso(H) = 1.2Ueq(N); O—H(alcohol) = 0.85 Å and Uiso(H) = 1.2Ueq(O); O—H(acid) = 0.82 Å and Uiso(H) = 1.5Ueq(O). ?

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A 50% thermal ellipsoidal drawing of the asymmetric cell.
[Figure 2] Fig. 2. Drawing of the packing along the b axis.
Tetrabutylammonium tetrakis(trimethylsilanolato-κO)ferrate(III) top
Crystal data top
(C16H36N)[Fe(C3H9OSi)4]Z = 2
Mr = 655.08F(000) = 722
Triclinic, P1Dx = 1.044 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4952 (5) ÅCell parameters from 7900 reflections
b = 10.5143 (5) Åθ = 2.3–27.4°
c = 19.3506 (9) ŵ = 0.50 mm1
α = 82.722 (1)°T = 173 K
β = 82.834 (1)°Block, colourless
γ = 81.658 (1)°0.56 × 0.35 × 0.28 mm
V = 2083.37 (17) Å3
Data collection top
Bruker APEXII CCD
diffractometer
9424 independent reflections
Radiation source: fine-focus sealed tube6223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 836.6 pixels mm-1θmax = 28.6°, θmin = 2.0°
ω and φ 0.5 deg scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1314
Tmin = 0.767, Tmax = 0.872l = 2525
18068 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0118P)2]
where P = (Fo2 + 2Fc2)/3
9424 reflections(Δ/σ)max = 0.002
359 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
(C16H36N)[Fe(C3H9OSi)4]γ = 81.658 (1)°
Mr = 655.08V = 2083.37 (17) Å3
Triclinic, P1Z = 2
a = 10.4952 (5) ÅMo Kα radiation
b = 10.5143 (5) ŵ = 0.50 mm1
c = 19.3506 (9) ÅT = 173 K
α = 82.722 (1)°0.56 × 0.35 × 0.28 mm
β = 82.834 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
9424 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6223 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.872Rint = 0.071
18068 measured reflectionsθmax = 28.6°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.36 e Å3
S = 0.93Δρmin = 0.30 e Å3
9424 reflectionsAbsolute structure: ?
359 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a glass fiber or nylon loop using Paratone oil for Mo radiation and Mineral oil for Copper radiation. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83 Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique (Sheldrick, 2008). The structures are solved by the direct method using the SHELXS97 program and refined by least squares method on F2, SHELXL97, incorporated in SHELXTL-PC.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. _michigan_contact_Crystallographer_name 'Richard Staples' _michigan_contact_Crystallographer_email xraystaples@chemistry.msu.com

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.74285 (3)0.64074 (3)0.746004 (14)0.03091 (9)
Si10.79239 (6)0.42170 (6)0.87610 (3)0.04012 (16)
Si20.72382 (6)0.43686 (6)0.63710 (3)0.04463 (17)
Si30.54754 (6)0.86616 (6)0.82993 (3)0.03772 (15)
Si40.88113 (6)0.84989 (6)0.63377 (3)0.03860 (16)
O10.82805 (13)0.52860 (13)0.81292 (7)0.0461 (4)
O20.67258 (13)0.54525 (13)0.68921 (7)0.0456 (4)
O30.60452 (14)0.74786 (13)0.78552 (7)0.0483 (4)
O40.86943 (13)0.73219 (13)0.69549 (7)0.0416 (4)
C10.8425 (3)0.4626 (3)0.95884 (12)0.0724 (8)
H1A0.93680.46080.95410.109*
H1B0.81640.39940.99780.109*
H1C0.80070.54930.96810.109*
C20.8795 (2)0.2593 (2)0.85816 (15)0.0737 (9)
H2A0.85660.23710.81400.111*
H2B0.85460.19420.89650.111*
H2C0.97320.26120.85460.111*
C30.6159 (2)0.4104 (3)0.88869 (14)0.0755 (9)
H3A0.56840.49250.90200.113*
H3B0.59790.34070.92580.113*
H3C0.58810.39190.84490.113*
C40.9026 (2)0.4104 (3)0.62274 (16)0.0805 (9)
H4A0.93430.48840.59740.121*
H4B0.93060.33740.59510.121*
H4C0.93770.39130.66810.121*
C50.6691 (2)0.2787 (2)0.67500 (16)0.0762 (9)
H5A0.70980.24730.71790.114*
H5B0.69410.21550.64100.114*
H5C0.57470.29030.68590.114*
C60.6578 (3)0.4858 (3)0.55180 (13)0.0842 (9)
H6A0.56320.49100.55870.126*
H6B0.69300.42170.51940.126*
H6C0.68240.57050.53220.126*
C70.4713 (2)0.8052 (2)0.91776 (11)0.0580 (7)
H7A0.39960.75860.91200.087*
H7B0.43840.87830.94460.087*
H7C0.53600.74650.94280.087*
C80.4215 (2)0.9769 (2)0.78437 (12)0.0525 (6)
H8A0.46071.01500.73930.079*
H8B0.38461.04590.81350.079*
H8C0.35280.92820.77640.079*
C90.6750 (2)0.9638 (2)0.84233 (13)0.0593 (7)
H9A0.74230.90880.86720.089*
H9B0.63661.03460.86990.089*
H9C0.71340.99960.79650.089*
C100.7182 (2)0.9279 (2)0.61219 (12)0.0544 (7)
H10A0.67150.86370.59720.082*
H10B0.72770.99820.57430.082*
H10C0.66950.96290.65370.082*
C110.9695 (2)0.9731 (2)0.66132 (12)0.0529 (6)
H11A0.92201.00710.70340.079*
H11B0.97661.04400.62350.079*
H11C1.05640.93310.67150.079*
C120.9728 (2)0.7892 (2)0.55258 (12)0.0647 (7)
H12A1.05620.74100.56380.097*
H12B0.98780.86270.51740.097*
H12C0.92240.73220.53410.097*
N10.24290 (14)0.52480 (15)0.75675 (8)0.0290 (4)
C130.12540 (17)0.61155 (18)0.78604 (10)0.0324 (5)
H13A0.08060.65790.74620.039*
H13B0.06510.55590.81420.039*
C140.15129 (19)0.7106 (2)0.83111 (11)0.0417 (5)
H14A0.19760.66600.87070.050*
H14B0.20780.77010.80300.050*
C150.0275 (2)0.7877 (2)0.85923 (11)0.0438 (6)
H15A0.02530.72870.89060.053*
H15B0.02240.82500.81960.053*
C160.0493 (2)0.8961 (2)0.89928 (14)0.0655 (7)
H16A0.09580.85980.93970.098*
H16B0.03450.94300.91560.098*
H16C0.10070.95560.86850.098*
C170.34387 (18)0.60341 (19)0.71623 (10)0.0326 (5)
H17A0.42200.54320.70250.039*
H17B0.36880.66030.74790.039*
C180.30222 (19)0.6867 (2)0.65075 (10)0.0391 (5)
H18A0.28880.63040.61570.047*
H18B0.21890.74090.66270.047*
C190.4030 (2)0.7727 (2)0.61963 (11)0.0444 (6)
H19A0.48830.71910.61250.053*
H19B0.40980.83490.65300.053*
C200.3703 (2)0.8464 (2)0.55050 (11)0.0601 (7)
H20A0.37130.78530.51610.090*
H20B0.43450.90550.53370.090*
H20C0.28400.89610.55680.090*
C210.31012 (18)0.44134 (18)0.81477 (10)0.0329 (5)
H21A0.33800.49900.84500.039*
H21B0.38930.39160.79320.039*
C220.23097 (19)0.3468 (2)0.86101 (10)0.0400 (5)
H22A0.15410.39510.88540.048*
H22B0.20040.28940.83160.048*
C230.3114 (2)0.2658 (2)0.91458 (10)0.0420 (5)
H23A0.34230.32360.94370.050*
H23B0.38820.21780.88990.050*
C240.2344 (2)0.1701 (2)0.96193 (12)0.0609 (7)
H24A0.16040.21750.98810.091*
H24B0.29020.11810.99490.091*
H24C0.20300.11320.93330.091*
C250.19311 (19)0.44218 (19)0.70961 (10)0.0344 (5)
H25A0.12650.39410.73780.041*
H25B0.15020.50030.67260.041*
C260.2951 (2)0.3457 (2)0.67477 (11)0.0448 (6)
H26A0.33570.28390.71120.054*
H26B0.36350.39220.64710.054*
C270.2357 (2)0.2720 (2)0.62695 (13)0.0622 (7)
H27A0.17150.22120.65540.075*
H27B0.18950.33460.59290.075*
C280.3361 (3)0.1820 (3)0.58759 (15)0.0907 (10)
H28A0.39720.23230.55740.136*
H28B0.29330.13450.55880.136*
H28C0.38300.12060.62110.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03597 (17)0.02678 (16)0.03030 (17)0.00261 (13)0.00944 (13)0.00036 (12)
Si10.0344 (3)0.0395 (4)0.0461 (4)0.0115 (3)0.0156 (3)0.0149 (3)
Si20.0378 (4)0.0445 (4)0.0565 (4)0.0014 (3)0.0152 (3)0.0219 (3)
Si30.0411 (4)0.0376 (3)0.0337 (3)0.0011 (3)0.0025 (3)0.0072 (3)
Si40.0440 (4)0.0387 (3)0.0314 (3)0.0072 (3)0.0058 (3)0.0063 (3)
O10.0402 (8)0.0498 (9)0.0476 (9)0.0145 (7)0.0188 (7)0.0210 (7)
O20.0356 (8)0.0480 (9)0.0580 (10)0.0021 (7)0.0150 (8)0.0235 (8)
O30.0533 (9)0.0416 (9)0.0477 (9)0.0050 (8)0.0012 (8)0.0130 (7)
O40.0465 (9)0.0388 (8)0.0377 (8)0.0081 (7)0.0100 (7)0.0114 (7)
C10.082 (2)0.087 (2)0.0508 (16)0.0161 (17)0.0132 (15)0.0040 (15)
C20.0672 (18)0.0410 (15)0.119 (2)0.0111 (14)0.0364 (18)0.0005 (15)
C30.0402 (15)0.083 (2)0.097 (2)0.0209 (15)0.0119 (15)0.0309 (17)
C40.0470 (16)0.086 (2)0.114 (2)0.0026 (16)0.0061 (17)0.0519 (19)
C50.0668 (18)0.0441 (15)0.120 (3)0.0008 (14)0.0237 (18)0.0148 (16)
C60.111 (2)0.084 (2)0.0618 (19)0.0044 (19)0.0300 (18)0.0245 (16)
C70.0594 (16)0.0718 (17)0.0410 (14)0.0125 (14)0.0010 (12)0.0021 (12)
C80.0564 (15)0.0482 (14)0.0511 (15)0.0045 (12)0.0079 (12)0.0102 (12)
C90.0579 (16)0.0612 (16)0.0626 (17)0.0139 (14)0.0074 (14)0.0136 (13)
C100.0578 (15)0.0532 (15)0.0488 (15)0.0031 (13)0.0166 (13)0.0130 (12)
C110.0542 (15)0.0461 (14)0.0578 (15)0.0126 (12)0.0058 (13)0.0032 (12)
C120.0726 (18)0.0747 (18)0.0430 (15)0.0062 (15)0.0006 (14)0.0025 (13)
N10.0224 (8)0.0352 (9)0.0299 (9)0.0038 (7)0.0066 (7)0.0014 (7)
C130.0224 (10)0.0390 (12)0.0350 (12)0.0030 (9)0.0043 (9)0.0013 (9)
C140.0330 (12)0.0459 (13)0.0467 (13)0.0041 (11)0.0023 (11)0.0106 (11)
C150.0413 (13)0.0398 (13)0.0477 (14)0.0014 (11)0.0012 (11)0.0050 (11)
C160.0629 (17)0.0500 (15)0.0823 (19)0.0071 (14)0.0130 (15)0.0228 (14)
C170.0239 (10)0.0388 (12)0.0344 (11)0.0050 (9)0.0025 (9)0.0015 (9)
C180.0357 (12)0.0439 (13)0.0361 (12)0.0050 (10)0.0057 (10)0.0028 (10)
C190.0500 (14)0.0397 (13)0.0412 (13)0.0080 (11)0.0017 (11)0.0032 (10)
C200.0754 (18)0.0564 (16)0.0459 (15)0.0174 (14)0.0037 (14)0.0116 (12)
C210.0273 (11)0.0377 (12)0.0327 (11)0.0011 (9)0.0103 (9)0.0000 (9)
C220.0341 (12)0.0475 (13)0.0370 (12)0.0077 (11)0.0039 (10)0.0035 (10)
C230.0481 (13)0.0433 (13)0.0341 (12)0.0077 (11)0.0071 (11)0.0017 (10)
C240.0762 (18)0.0606 (16)0.0462 (15)0.0233 (15)0.0104 (14)0.0130 (13)
C250.0332 (12)0.0395 (12)0.0326 (11)0.0081 (10)0.0082 (9)0.0041 (9)
C260.0433 (13)0.0457 (14)0.0456 (14)0.0005 (11)0.0070 (11)0.0096 (11)
C270.0691 (18)0.0645 (17)0.0581 (16)0.0015 (15)0.0169 (14)0.0282 (14)
C280.112 (3)0.081 (2)0.082 (2)0.0331 (19)0.040 (2)0.0439 (17)
Geometric parameters (Å, º) top
Fe1—O11.8608 (13)C12—H12B0.9800
Fe1—O21.8591 (13)C12—H12C0.9800
Fe1—O31.8515 (14)N1—C211.515 (2)
Fe1—O41.8583 (13)N1—C171.518 (2)
Si1—O11.5993 (14)N1—C131.518 (2)
Si1—C31.857 (2)N1—C251.520 (2)
Si1—C11.864 (2)C13—C141.514 (3)
Si1—C21.869 (2)C13—H13A0.9900
Si2—O21.6071 (14)C13—H13B0.9900
Si2—C41.847 (2)C14—C151.507 (3)
Si2—C61.853 (2)C14—H14A0.9900
Si2—C51.870 (2)C14—H14B0.9900
Si3—O31.6031 (15)C15—C161.515 (3)
Si3—C91.855 (2)C15—H15A0.9900
Si3—C81.862 (2)C15—H15B0.9900
Si3—C71.864 (2)C16—H16A0.9800
Si4—O41.6143 (13)C16—H16B0.9800
Si4—C101.859 (2)C16—H16C0.9800
Si4—C111.863 (2)C17—C181.520 (2)
Si4—C121.871 (2)C17—H17A0.9900
C1—H1A0.9800C17—H17B0.9900
C1—H1B0.9800C18—C191.510 (3)
C1—H1C0.9800C18—H18A0.9900
C2—H2A0.9800C18—H18B0.9900
C2—H2B0.9800C19—C201.511 (3)
C2—H2C0.9800C19—H19A0.9900
C3—H3A0.9800C19—H19B0.9900
C3—H3B0.9800C20—H20A0.9800
C3—H3C0.9800C20—H20B0.9800
C4—H4A0.9800C20—H20C0.9800
C4—H4B0.9800C21—C221.519 (2)
C4—H4C0.9800C21—H21A0.9900
C5—H5A0.9800C21—H21B0.9900
C5—H5B0.9800C22—C231.516 (2)
C5—H5C0.9800C22—H22A0.9900
C6—H6A0.9800C22—H22B0.9900
C6—H6B0.9800C23—C241.524 (3)
C6—H6C0.9800C23—H23A0.9900
C7—H7A0.9800C23—H23B0.9900
C7—H7B0.9800C24—H24A0.9800
C7—H7C0.9800C24—H24B0.9800
C8—H8A0.9800C24—H24C0.9800
C8—H8B0.9800C25—C261.519 (3)
C8—H8C0.9800C25—H25A0.9900
C9—H9A0.9800C25—H25B0.9900
C9—H9B0.9800C26—C271.520 (3)
C9—H9C0.9800C26—H26A0.9900
C10—H10A0.9800C26—H26B0.9900
C10—H10B0.9800C27—C281.510 (3)
C10—H10C0.9800C27—H27A0.9900
C11—H11A0.9800C27—H27B0.9900
C11—H11B0.9800C28—H28A0.9800
C11—H11C0.9800C28—H28B0.9800
C12—H12A0.9800C28—H28C0.9800
O3—Fe1—O4112.58 (6)H12A—C12—H12C109.5
O3—Fe1—O2105.76 (6)H12B—C12—H12C109.5
O4—Fe1—O2111.55 (6)C21—N1—C17105.74 (13)
O3—Fe1—O1112.53 (7)C21—N1—C13111.41 (14)
O4—Fe1—O1105.17 (6)C17—N1—C13111.40 (14)
O2—Fe1—O1109.33 (6)C21—N1—C25111.07 (14)
O1—Si1—C3111.45 (9)C17—N1—C25111.13 (15)
O1—Si1—C1109.84 (10)C13—N1—C25106.18 (13)
C3—Si1—C1108.97 (13)C14—C13—N1116.35 (15)
O1—Si1—C2110.30 (11)C14—C13—H13A108.2
C3—Si1—C2107.99 (12)N1—C13—H13A108.2
C1—Si1—C2108.20 (12)C14—C13—H13B108.2
O2—Si2—C4111.65 (10)N1—C13—H13B108.2
O2—Si2—C6109.81 (10)H13A—C13—H13B107.4
C4—Si2—C6109.42 (14)C15—C14—C13111.60 (16)
O2—Si2—C5110.26 (11)C15—C14—H14A109.3
C4—Si2—C5107.23 (12)C13—C14—H14A109.3
C6—Si2—C5108.38 (13)C15—C14—H14B109.3
O3—Si3—C9111.92 (10)C13—C14—H14B109.3
O3—Si3—C8110.69 (9)H14A—C14—H14B108.0
C9—Si3—C8107.22 (11)C14—C15—C16113.43 (18)
O3—Si3—C7110.32 (10)C14—C15—H15A108.9
C9—Si3—C7108.60 (11)C16—C15—H15A108.9
C8—Si3—C7107.95 (11)C14—C15—H15B108.9
O4—Si4—C10110.89 (9)C16—C15—H15B108.9
O4—Si4—C11109.98 (9)H15A—C15—H15B107.7
C10—Si4—C11109.09 (10)C15—C16—H16A109.5
O4—Si4—C12110.34 (9)C15—C16—H16B109.5
C10—Si4—C12108.16 (11)H16A—C16—H16B109.5
C11—Si4—C12108.32 (11)C15—C16—H16C109.5
Si1—O1—Fe1137.69 (9)H16A—C16—H16C109.5
Si2—O2—Fe1137.57 (8)H16B—C16—H16C109.5
Si3—O3—Fe1151.05 (10)N1—C17—C18115.47 (14)
Si4—O4—Fe1139.01 (8)N1—C17—H17A108.4
Si1—C1—H1A109.5C18—C17—H17A108.4
Si1—C1—H1B109.5N1—C17—H17B108.4
H1A—C1—H1B109.5C18—C17—H17B108.4
Si1—C1—H1C109.5H17A—C17—H17B107.5
H1A—C1—H1C109.5C19—C18—C17111.02 (15)
H1B—C1—H1C109.5C19—C18—H18A109.4
Si1—C2—H2A109.5C17—C18—H18A109.4
Si1—C2—H2B109.5C19—C18—H18B109.4
H2A—C2—H2B109.5C17—C18—H18B109.4
Si1—C2—H2C109.5H18A—C18—H18B108.0
H2A—C2—H2C109.5C18—C19—C20111.97 (17)
H2B—C2—H2C109.5C18—C19—H19A109.2
Si1—C3—H3A109.5C20—C19—H19A109.2
Si1—C3—H3B109.5C18—C19—H19B109.2
H3A—C3—H3B109.5C20—C19—H19B109.2
Si1—C3—H3C109.5H19A—C19—H19B107.9
H3A—C3—H3C109.5C19—C20—H20A109.5
H3B—C3—H3C109.5C19—C20—H20B109.5
Si2—C4—H4A109.5H20A—C20—H20B109.5
Si2—C4—H4B109.5C19—C20—H20C109.5
H4A—C4—H4B109.5H20A—C20—H20C109.5
Si2—C4—H4C109.5H20B—C20—H20C109.5
H4A—C4—H4C109.5N1—C21—C22116.20 (14)
H4B—C4—H4C109.5N1—C21—H21A108.2
Si2—C5—H5A109.5C22—C21—H21A108.2
Si2—C5—H5B109.5N1—C21—H21B108.2
H5A—C5—H5B109.5C22—C21—H21B108.2
Si2—C5—H5C109.5H21A—C21—H21B107.4
H5A—C5—H5C109.5C23—C22—C21110.69 (15)
H5B—C5—H5C109.5C23—C22—H22A109.5
Si2—C6—H6A109.5C21—C22—H22A109.5
Si2—C6—H6B109.5C23—C22—H22B109.5
H6A—C6—H6B109.5C21—C22—H22B109.5
Si2—C6—H6C109.5H22A—C22—H22B108.1
H6A—C6—H6C109.5C22—C23—C24111.91 (17)
H6B—C6—H6C109.5C22—C23—H23A109.2
Si3—C7—H7A109.5C24—C23—H23A109.2
Si3—C7—H7B109.5C22—C23—H23B109.2
H7A—C7—H7B109.5C24—C23—H23B109.2
Si3—C7—H7C109.5H23A—C23—H23B107.9
H7A—C7—H7C109.5C23—C24—H24A109.5
H7B—C7—H7C109.5C23—C24—H24B109.5
Si3—C8—H8A109.5H24A—C24—H24B109.5
Si3—C8—H8B109.5C23—C24—H24C109.5
H8A—C8—H8B109.5H24A—C24—H24C109.5
Si3—C8—H8C109.5H24B—C24—H24C109.5
H8A—C8—H8C109.5C26—C25—N1115.46 (15)
H8B—C8—H8C109.5C26—C25—H25A108.4
Si3—C9—H9A109.5N1—C25—H25A108.4
Si3—C9—H9B109.5C26—C25—H25B108.4
H9A—C9—H9B109.5N1—C25—H25B108.4
Si3—C9—H9C109.5H25A—C25—H25B107.5
H9A—C9—H9C109.5C25—C26—C27111.05 (17)
H9B—C9—H9C109.5C25—C26—H26A109.4
Si4—C10—H10A109.5C27—C26—H26A109.4
Si4—C10—H10B109.5C25—C26—H26B109.4
H10A—C10—H10B109.5C27—C26—H26B109.4
Si4—C10—H10C109.5H26A—C26—H26B108.0
H10A—C10—H10C109.5C28—C27—C26112.4 (2)
H10B—C10—H10C109.5C28—C27—H27A109.1
Si4—C11—H11A109.5C26—C27—H27A109.1
Si4—C11—H11B109.5C28—C27—H27B109.1
H11A—C11—H11B109.5C26—C27—H27B109.1
Si4—C11—H11C109.5H27A—C27—H27B107.9
H11A—C11—H11C109.5C27—C28—H28A109.5
H11B—C11—H11C109.5C27—C28—H28B109.5
Si4—C12—H12A109.5H28A—C28—H28B109.5
Si4—C12—H12B109.5C27—C28—H28C109.5
H12A—C12—H12B109.5H28A—C28—H28C109.5
Si4—C12—H12C109.5H28B—C28—H28C109.5
C3—Si1—O1—Fe13.07 (19)O2—Fe1—O4—Si466.36 (15)
C1—Si1—O1—Fe1123.94 (15)O1—Fe1—O4—Si4175.23 (13)
C2—Si1—O1—Fe1116.88 (16)C21—N1—C13—C1463.1 (2)
O3—Fe1—O1—Si155.77 (16)C17—N1—C13—C1454.7 (2)
O4—Fe1—O1—Si1178.67 (13)C25—N1—C13—C14175.85 (16)
O2—Fe1—O1—Si161.44 (16)N1—C13—C14—C15177.98 (16)
C4—Si2—O2—Fe17.49 (19)C13—C14—C15—C16174.84 (18)
C6—Si2—O2—Fe1129.04 (15)C21—N1—C17—C18174.73 (16)
C5—Si2—O2—Fe1111.60 (15)C13—N1—C17—C1864.1 (2)
O3—Fe1—O2—Si2178.46 (13)C25—N1—C17—C1854.1 (2)
O4—Fe1—O2—Si255.75 (15)N1—C17—C18—C19173.01 (17)
O1—Fe1—O2—Si260.14 (15)C17—C18—C19—C20174.14 (18)
C9—Si3—O3—Fe112.8 (2)C17—N1—C21—C22176.67 (16)
C8—Si3—O3—Fe1132.34 (18)C13—N1—C21—C2262.1 (2)
C7—Si3—O3—Fe1108.2 (2)C25—N1—C21—C2256.0 (2)
O4—Fe1—O3—Si348.4 (2)N1—C21—C22—C23177.55 (16)
O2—Fe1—O3—Si3170.41 (18)C21—C22—C23—C24179.85 (18)
O1—Fe1—O3—Si370.3 (2)C21—N1—C25—C2658.1 (2)
C10—Si4—O4—Fe17.56 (17)C17—N1—C25—C2659.3 (2)
C11—Si4—O4—Fe1128.31 (14)C13—N1—C25—C26179.38 (16)
C12—Si4—O4—Fe1112.26 (15)N1—C25—C26—C27177.93 (17)
O3—Fe1—O4—Si452.36 (15)C25—C26—C27—C28176.0 (2)
Selected bond lengths (Å) top
Fe1—O11.8608 (13)Fe1—O31.8515 (14)
Fe1—O21.8591 (13)Fe1—O41.8583 (13)
Acknowledgements top

We thank the University College of the Pennsylvania State University and the Air Force Office of Scientific Research (FA9550–08-1–0213 F A9550–08-1–0213) for their financial support. The CCD-based X-ray diffractometer at Michigan State University was upgraded and/or replaced by departmental funds.

references
References top

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Hay, M. T. & Geib, S. J. (2007). Acta Cryst. E63, m445–m446.

Hay, M. T., Geib, S. J. & Pettner, D. A. (2009). Polyhedron, 28, 2183–2186.

Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431–434.

Shapley, P. A., Bigham, W. S. & Hay, M. T. (2003). Inorg. Chim. Acta, 345, 255–260.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.