supplementary materials


xu5610 scheme

Acta Cryst. (2012). E68, m1194    [ doi:10.1107/S160053681203574X ]

{2-[(2-Carbamoylhydrazin-1-ylidene)methyl-[kappa]2N1,O]-5-methoxyphenolato-[kappa]O1}chloridocopper(II)

R. J. Kunnath, M. R. Prathapachandra Kurup and S. W. Ng

Abstract top

The asymmetric unit of the title compound, [Cu(C9H10N3O3)Cl], contains two independent molecules with similar structures. The CuII cation is N,O,O'-chelated by the deprotonated Schiff base ligand and is further coordinated by a Cl- anion in a distorted ClNO2 square-planar geometry. In the crystal, adjacent molecules are linked by N-H...O and N-H...Cl hydrogen bonds, forming a two-dimensional network parallel to [100].

Comment top

Salicylaldehyde thiosemicarbazone and its subsituted derivatives are Schiff bases that are capable of N,N',O-chelation to transition metal ions, a feature that has been documented in a plethora of metal derivatives. Several copper derivatives have been reported (Wang et al., 2008; Patole et al., 2001). The CuII atom in CuCl(C9H10N3O3) (Scheme I) is N,N',O-chelated by the deprotonated Schiff base, and it exists in a square planar environment in the two independent molecules (Fig. 1). Adjacent molecules are linked by N–H···O and N–H···Cl hydrogen bonds to form a two-dimensional network (Table 1).

Related literature top

For similar copper(II) complexes, see: Wang et al. (2008); Patole et al. (2001).

Experimental top

The Schiff base was prepared by heating 2-hydroxy-4-methoxybenzaldehyde (0.152 g,1 mmol) and semicarbazide hydrochloride (0.111 g,1 mmol) for 3 h. Copper(II) dichloride dihydrate (0.170 g, 1 mmol) was added to the solution and reflux was continued for another 2 h. Dark green colored crystals were isolated from the cool solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms were similarly treated (N–H 0.88 Å).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of CuCl(C9H10N3O3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
{2-[(2-Carbamoylhydrazin-1-ylidene)methyl-κ2N1,O]- 5-methoxyphenolato-κO1}chloridocopper(II) top
Crystal data top
[Cu(C9H10N3O3)Cl]F(000) = 1240
Mr = 307.19Dx = 1.821 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5495 reflections
a = 11.8413 (6) Åθ = 2.3–27.0°
b = 14.2791 (7) ŵ = 2.19 mm1
c = 13.5751 (6) ÅT = 295 K
β = 102.501 (2)°Prism, dark green
V = 2240.90 (19) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII
diffractometer
5562 independent reflections
Radiation source: fine-focus sealed tube3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.560, Tmax = 0.669k = 1719
20852 measured reflectionsl = 1118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0443P)2 + 2.0625P]
where P = (Fo2 + 2Fc2)/3
5562 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C9H10N3O3)Cl]V = 2240.90 (19) Å3
Mr = 307.19Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.8413 (6) ŵ = 2.19 mm1
b = 14.2791 (7) ÅT = 295 K
c = 13.5751 (6) Å0.30 × 0.25 × 0.20 mm
β = 102.501 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
3809 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.047
Tmin = 0.560, Tmax = 0.669θmax = 28.4°
20852 measured reflectionsStandard reflections: 0
5562 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.57 e Å3
S = 1.02Δρmin = 0.37 e Å3
5562 reflectionsAbsolute structure: ?
307 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29935 (3)0.85386 (3)0.32124 (3)0.03357 (12)
Cu20.79752 (3)0.56618 (3)0.33325 (3)0.03219 (12)
Cl10.11883 (7)0.88631 (6)0.33195 (7)0.0418 (2)
Cl20.61629 (7)0.53124 (6)0.33804 (8)0.0509 (3)
O10.6111 (2)1.23052 (19)0.4410 (2)0.0569 (7)
O20.35126 (19)0.97847 (15)0.33806 (18)0.0365 (5)
O30.25915 (19)0.72346 (16)0.2833 (2)0.0446 (6)
O41.1173 (2)0.19137 (16)0.4510 (2)0.0488 (6)
O50.85178 (17)0.44138 (14)0.35581 (17)0.0334 (5)
O60.75675 (19)0.69642 (15)0.29078 (18)0.0380 (5)
N10.4534 (2)0.80675 (18)0.3315 (2)0.0324 (6)
N20.4528 (2)0.71236 (19)0.3109 (2)0.0396 (7)
H10.51680.68020.31320.048*
N30.3391 (3)0.58301 (19)0.2679 (3)0.0495 (8)
H20.27090.55590.25220.059*
H30.40230.54970.27100.059*
N40.9510 (2)0.61509 (17)0.34674 (18)0.0276 (5)
N50.9498 (2)0.70935 (17)0.3251 (2)0.0330 (6)
H41.01360.74250.33140.040*
N60.8360 (2)0.83611 (18)0.2675 (2)0.0400 (7)
H50.76780.86250.24710.048*
H60.89930.86920.27060.048*
C10.5869 (3)1.1399 (2)0.4154 (3)0.0409 (8)
C20.4767 (3)1.1034 (2)0.3879 (2)0.0357 (7)
H2A0.41321.14260.38430.043*
C30.4589 (3)1.0082 (2)0.3654 (2)0.0310 (7)
C40.5574 (3)0.9494 (2)0.3722 (2)0.0325 (7)
C50.6682 (3)0.9899 (3)0.3998 (3)0.0414 (8)
H5A0.73290.95190.40400.050*
C60.6834 (3)1.0825 (3)0.4205 (3)0.0459 (9)
H6A0.75761.10750.43800.055*
C70.5192 (4)1.2946 (3)0.4323 (3)0.0632 (12)
H7A0.54931.35550.45350.095*
H7B0.46791.27460.47410.095*
H7C0.47761.29740.36330.095*
C80.5499 (3)0.8510 (2)0.3526 (2)0.0340 (7)
H80.61790.81760.35520.041*
C90.3466 (3)0.6727 (2)0.2867 (3)0.0366 (7)
C101.0904 (3)0.2828 (2)0.4312 (2)0.0349 (7)
C110.9796 (3)0.3175 (2)0.4037 (2)0.0326 (7)
H110.91710.27700.39880.039*
C120.9595 (2)0.4135 (2)0.3829 (2)0.0268 (6)
C131.0564 (3)0.4741 (2)0.3919 (2)0.0291 (6)
C141.1674 (3)0.4347 (2)0.4214 (3)0.0376 (8)
H141.23130.47400.42790.045*
C151.1859 (3)0.3423 (2)0.4406 (3)0.0412 (8)
H151.26070.31880.45980.049*
C161.0267 (3)0.1256 (2)0.4431 (3)0.0516 (10)
H16A1.05870.06430.45930.077*
H16B0.98110.12570.37540.077*
H16C0.97880.14210.48910.077*
C171.0479 (3)0.5715 (2)0.3717 (2)0.0311 (7)
H171.11580.60560.37670.037*
C180.8432 (3)0.7473 (2)0.2934 (2)0.0322 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0244 (2)0.0258 (2)0.0503 (3)0.00060 (15)0.00748 (16)0.00107 (17)
Cu20.0229 (2)0.0211 (2)0.0503 (3)0.00078 (14)0.00288 (16)0.00072 (16)
Cl10.0258 (4)0.0332 (4)0.0670 (6)0.0013 (3)0.0116 (4)0.0007 (4)
Cl20.0247 (4)0.0293 (4)0.0961 (8)0.0006 (3)0.0073 (4)0.0012 (4)
O10.0594 (18)0.0400 (16)0.0694 (19)0.0185 (13)0.0099 (14)0.0094 (13)
O20.0285 (12)0.0257 (12)0.0548 (15)0.0006 (9)0.0081 (10)0.0012 (10)
O30.0277 (12)0.0296 (13)0.0749 (18)0.0020 (10)0.0079 (11)0.0087 (12)
O40.0478 (16)0.0282 (13)0.0696 (18)0.0131 (11)0.0107 (12)0.0097 (12)
O50.0226 (11)0.0229 (11)0.0524 (14)0.0008 (8)0.0031 (9)0.0013 (9)
O60.0301 (12)0.0244 (12)0.0585 (15)0.0019 (9)0.0074 (10)0.0048 (10)
N10.0311 (14)0.0290 (14)0.0372 (15)0.0004 (11)0.0075 (11)0.0017 (11)
N20.0329 (15)0.0260 (14)0.0595 (19)0.0039 (11)0.0092 (13)0.0029 (13)
N30.0340 (17)0.0280 (16)0.085 (2)0.0026 (12)0.0091 (15)0.0099 (15)
N40.0266 (13)0.0216 (13)0.0342 (14)0.0005 (10)0.0056 (10)0.0025 (10)
N50.0277 (14)0.0197 (13)0.0507 (17)0.0001 (10)0.0068 (11)0.0050 (11)
N60.0308 (15)0.0249 (14)0.0628 (19)0.0023 (11)0.0072 (13)0.0098 (13)
C10.048 (2)0.037 (2)0.0372 (19)0.0124 (16)0.0101 (15)0.0028 (15)
C20.0386 (19)0.0313 (18)0.0373 (18)0.0030 (14)0.0085 (14)0.0019 (14)
C30.0302 (17)0.0312 (17)0.0322 (17)0.0043 (13)0.0081 (12)0.0009 (13)
C40.0277 (16)0.0359 (18)0.0348 (17)0.0039 (13)0.0086 (12)0.0009 (13)
C50.0289 (18)0.047 (2)0.048 (2)0.0052 (15)0.0064 (14)0.0006 (16)
C60.0335 (19)0.052 (2)0.050 (2)0.0151 (16)0.0043 (15)0.0052 (17)
C70.086 (3)0.041 (2)0.060 (3)0.006 (2)0.011 (2)0.0008 (19)
C80.0242 (16)0.0371 (19)0.0413 (19)0.0014 (13)0.0081 (13)0.0018 (14)
C90.0308 (18)0.0292 (17)0.049 (2)0.0027 (13)0.0069 (14)0.0014 (15)
C100.0394 (19)0.0269 (17)0.0378 (19)0.0088 (13)0.0071 (13)0.0021 (13)
C110.0319 (17)0.0275 (17)0.0374 (18)0.0013 (12)0.0058 (13)0.0003 (13)
C120.0248 (15)0.0261 (16)0.0287 (16)0.0025 (11)0.0042 (11)0.0012 (12)
C130.0258 (16)0.0264 (16)0.0346 (17)0.0034 (12)0.0052 (12)0.0008 (12)
C140.0257 (17)0.0343 (19)0.051 (2)0.0021 (13)0.0044 (14)0.0026 (15)
C150.0286 (18)0.038 (2)0.056 (2)0.0098 (14)0.0055 (15)0.0082 (16)
C160.060 (3)0.0251 (18)0.070 (3)0.0024 (17)0.015 (2)0.0074 (17)
C170.0242 (16)0.0297 (17)0.0392 (18)0.0005 (12)0.0063 (12)0.0002 (13)
C180.0305 (17)0.0270 (16)0.0397 (18)0.0024 (13)0.0087 (13)0.0001 (13)
Geometric parameters (Å, º) top
Cu1—O21.880 (2)N6—H60.8800
Cu1—N11.920 (3)C1—C21.380 (5)
Cu1—O31.963 (2)C1—C61.396 (5)
Cu1—Cl12.2225 (9)C2—C31.398 (4)
Cu2—O51.897 (2)C2—H2A0.9300
Cu2—N41.918 (2)C3—C41.424 (4)
Cu2—O61.976 (2)C4—C51.408 (4)
Cu2—Cl22.2179 (9)C4—C81.429 (4)
O1—C11.354 (4)C5—C61.356 (5)
O1—C71.408 (5)C5—H5A0.9300
O2—C31.319 (4)C6—H6A0.9300
O3—C91.257 (4)C7—H7A0.9600
O4—C101.357 (4)C7—H7B0.9600
O4—C161.412 (4)C7—H7C0.9600
O5—C121.311 (3)C8—H80.9300
O6—C181.250 (4)C10—C111.376 (4)
N1—C81.283 (4)C10—C151.398 (5)
N1—N21.376 (4)C11—C121.409 (4)
N2—C91.353 (4)C11—H110.9300
N2—H10.8800C12—C131.422 (4)
N3—C91.305 (4)C13—C141.406 (4)
N3—H20.8800C13—C171.417 (4)
N3—H30.8800C14—C151.354 (4)
N4—C171.284 (4)C14—H140.9300
N4—N51.377 (3)C15—H150.9300
N5—C181.355 (4)C16—H16A0.9600
N5—H40.8800C16—H16B0.9600
N6—C181.314 (4)C16—H16C0.9600
N6—H50.8800C17—H170.9300
O2—Cu1—N192.42 (10)C6—C5—C4122.0 (3)
O2—Cu1—O3169.71 (10)C6—C5—H5A119.0
N1—Cu1—O381.91 (10)C4—C5—H5A119.0
O2—Cu1—Cl195.08 (7)C5—C6—C1119.5 (3)
N1—Cu1—Cl1168.53 (8)C5—C6—H6A120.3
O3—Cu1—Cl191.89 (7)C1—C6—H6A120.3
O5—Cu2—N492.63 (10)O1—C7—H7A109.5
O5—Cu2—O6169.86 (10)O1—C7—H7B109.5
N4—Cu2—O681.48 (10)H7A—C7—H7B109.5
O5—Cu2—Cl294.59 (7)O1—C7—H7C109.5
N4—Cu2—Cl2169.05 (8)H7A—C7—H7C109.5
O6—Cu2—Cl292.49 (7)H7B—C7—H7C109.5
C1—O1—C7118.8 (3)N1—C8—C4122.8 (3)
C3—O2—Cu1127.6 (2)N1—C8—H8118.6
C9—O3—Cu1112.7 (2)C4—C8—H8118.6
C10—O4—C16118.8 (3)O3—C9—N3122.5 (3)
C12—O5—Cu2127.32 (19)O3—C9—N2118.8 (3)
C18—O6—Cu2113.1 (2)N3—C9—N2118.6 (3)
C8—N1—N2119.5 (3)O4—C10—C11124.7 (3)
C8—N1—Cu1129.0 (2)O4—C10—C15114.6 (3)
N2—N1—Cu1111.46 (19)C11—C10—C15120.7 (3)
C9—N2—N1115.0 (3)C10—C11—C12120.9 (3)
C9—N2—H1122.5C10—C11—H11119.5
N1—N2—H1122.5C12—C11—H11119.5
C9—N3—H2120.0O5—C12—C11117.6 (3)
C9—N3—H3120.0O5—C12—C13123.9 (3)
H2—N3—H3120.0C11—C12—C13118.5 (3)
C17—N4—N5119.8 (3)C14—C13—C17118.1 (3)
C17—N4—Cu2128.5 (2)C14—C13—C12117.9 (3)
N5—N4—Cu2111.69 (18)C17—C13—C12124.0 (3)
C18—N5—N4115.1 (2)C15—C14—C13123.2 (3)
C18—N5—H4122.4C15—C14—H14118.4
N4—N5—H4122.4C13—C14—H14118.4
C18—N6—H5120.0C14—C15—C10118.7 (3)
C18—N6—H6120.0C14—C15—H15120.6
H5—N6—H6120.0C10—C15—H15120.6
O1—C1—C2124.5 (3)O4—C16—H16A109.5
O1—C1—C6115.0 (3)O4—C16—H16B109.5
C2—C1—C6120.5 (3)H16A—C16—H16B109.5
C1—C2—C3121.0 (3)O4—C16—H16C109.5
C1—C2—H2A119.5H16A—C16—H16C109.5
C3—C2—H2A119.5H16B—C16—H16C109.5
O2—C3—C2117.7 (3)N4—C17—C13123.3 (3)
O2—C3—C4123.8 (3)N4—C17—H17118.3
C2—C3—C4118.5 (3)C13—C17—H17118.3
C5—C4—C3118.5 (3)O6—C18—N6123.2 (3)
C5—C4—C8118.0 (3)O6—C18—N5118.5 (3)
C3—C4—C8123.4 (3)N6—C18—N5118.2 (3)
N1—Cu1—O2—C310.5 (3)C2—C3—C4—C8179.0 (3)
O3—Cu1—O2—C366.8 (7)C3—C4—C5—C60.5 (5)
Cl1—Cu1—O2—C3160.8 (2)C8—C4—C5—C6179.5 (3)
O2—Cu1—O3—C959.4 (7)C4—C5—C6—C10.5 (5)
N1—Cu1—O3—C92.3 (2)O1—C1—C6—C5177.6 (3)
Cl1—Cu1—O3—C9168.0 (2)C2—C1—C6—C51.0 (5)
N4—Cu2—O5—C127.3 (3)N2—N1—C8—C4178.3 (3)
O6—Cu2—O5—C1261.4 (6)Cu1—N1—C8—C40.6 (5)
Cl2—Cu2—O5—C12164.5 (2)C5—C4—C8—N1176.7 (3)
O5—Cu2—O6—C1855.8 (6)C3—C4—C8—N13.2 (5)
N4—Cu2—O6—C180.9 (2)Cu1—O3—C9—N3177.4 (3)
Cl2—Cu2—O6—C18169.9 (2)Cu1—O3—C9—N22.5 (4)
O2—Cu1—N1—C85.9 (3)N1—N2—C9—O31.1 (5)
O3—Cu1—N1—C8177.3 (3)N1—N2—C9—N3178.8 (3)
Cl1—Cu1—N1—C8124.9 (4)C16—O4—C10—C110.3 (5)
O2—Cu1—N1—N2173.0 (2)C16—O4—C10—C15179.7 (3)
O3—Cu1—N1—N21.7 (2)O4—C10—C11—C12179.0 (3)
Cl1—Cu1—N1—N256.1 (5)C15—C10—C11—C121.0 (5)
C8—N1—N2—C9178.2 (3)Cu2—O5—C12—C11174.7 (2)
Cu1—N1—N2—C90.9 (3)Cu2—O5—C12—C135.6 (4)
O5—Cu2—N4—C175.5 (3)C10—C11—C12—O5179.1 (3)
O6—Cu2—N4—C17177.2 (3)C10—C11—C12—C130.7 (4)
Cl2—Cu2—N4—C17125.8 (4)O5—C12—C13—C14179.8 (3)
O5—Cu2—N4—N5174.17 (19)C11—C12—C13—C140.1 (4)
O6—Cu2—N4—N52.46 (19)O5—C12—C13—C170.7 (5)
Cl2—Cu2—N4—N554.6 (5)C11—C12—C13—C17179.0 (3)
C17—N4—N5—C18175.9 (3)C17—C13—C14—C15178.6 (3)
Cu2—N4—N5—C183.7 (3)C12—C13—C14—C150.5 (5)
C7—O1—C1—C25.1 (5)C13—C14—C15—C100.2 (5)
C7—O1—C1—C6176.3 (3)O4—C10—C15—C14179.4 (3)
O1—C1—C2—C3178.0 (3)C11—C10—C15—C140.6 (5)
C6—C1—C2—C30.5 (5)N5—N4—C17—C13177.9 (3)
Cu1—O2—C3—C2170.5 (2)Cu2—N4—C17—C131.7 (5)
Cu1—O2—C3—C410.1 (4)C14—C13—C17—N4178.2 (3)
C1—C2—C3—O2178.9 (3)C12—C13—C17—N42.7 (5)
C1—C2—C3—C40.5 (5)Cu2—O6—C18—N6179.5 (3)
O2—C3—C4—C5178.4 (3)Cu2—O6—C18—N51.0 (4)
C2—C3—C4—C51.0 (4)N4—N5—C18—O63.2 (4)
O2—C3—C4—C81.6 (5)N4—N5—C18—N6177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl20.882.423.203 (3)149
N3—H2···O2i0.882.012.824 (4)153
N3—H3···Cl20.882.513.297 (3)149
N5—H4···Cl1ii0.882.403.212 (3)154
N6—H5···O5iii0.882.092.897 (3)152
N6—H6···Cl1ii0.882.563.351 (3)149
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl20.882.423.203 (3)148.5
N3—H2···O2i0.882.012.824 (4)153.0
N3—H3···Cl20.882.513.297 (3)148.6
N5—H4···Cl1ii0.882.403.212 (3)153.5
N6—H5···O5iii0.882.092.897 (3)152.2
N6—H6···Cl1ii0.882.563.351 (3)149.4
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.
Acknowledgements top

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Patole, J., Dutta, S., Padhye, S. & SInn, E. (2001). Inorg. Chim. Acta, 318, 207–211.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, J.-L., Liu, B., Yang, B.-S. & Huang, S.-P. (2008). J. Struct. Chem. , 49, 570–574.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.