supplementary materials


zs2226 scheme

Acta Cryst. (2012). E68, m1180    [ doi:10.1107/S1600536812035386 ]

(Cyanato-[kappa]N){1-[(E)-phenyl(pyridin-2-yl-[kappa]N)methylidene]semicarbazidato-[kappa]2N1,O}copper(II)

R. J. Kunnath, M. R. Prathapachandra Kurup and S. W. Ng

Abstract top

The CuII atom in the title compound, [Cu(C13H11N4O)(NCO)], is N,N',O-chelated by the mono-deprotonated Schiff base ligand and it is also covalently bonded to the nitrogen end of the cyanate ion. The CuII atom shows a square-planar coordination that is distorted towards square-pyramidal owing to an intermolecular Cu...Ncyanate interaction [2.623 (2) Å], which gives a centrosymmetric dimer. In the square-planar description, the CuII atom is displaced out of the square plane [r.m.s. deviation = 0.048 Å] by 0.084 (1) Å in the direction of the apical occupant. In the crystal, adjacent complex dimers are linked by an amine N-H...N hydrogen-bond pair, also giving a centrosymmetric cyclic association [graph set R22(8)], generating a linear chain parallel to [110].

Comment top

2-Benzoylpyridine semicarbazone (de Lima et al., 2008) is a Schiff base that is capable of N,N',O-chelation to transition metal ions. This feature has been documented in a copper(II) dichloride adduct in which the Schiff base exists as a neutral molecule (Peŕez-Rebolledo et al., 2006). However, the CuII atom in the title compound [Cu(NCO)(C13H11N4O)] (Scheme I) is N,N',O-chelated by the mono-deprotonated Schiff base ligand and it is also covalently bonded to the nitrogen end of the cyanate ion. The metal center shows square-planar coordination that is distorted towards square-pyramidal coordination owing to an intermolecular Cu···Ncyanate interaction [2.623 (2) Å], which generates a centrosymmetric dimer (Fig. 1). The geometry is better interpreted as square planar as the Cu···Ncyanate···Cu angle is too acute [93.0 (1)°].

Adjacent dimers are linked by an amine N—H···N hydrogen-bond pair (Table 1), also giving a centrosymmetric cyclic association [graph set R22(8) (Etter et al., 1990], generating a linear chain parallel to [1 1 0].

Related literature top

For the synthesis of the Schiff base, see: de Lima et al. (2008). For a related copper(II) derivative, see: Peŕez-Rebolledo et al. (2006). For graph-set notation, see: Etter et al. (1990).

Experimental top

A methanol solution (20 ml) of 2-benzoylpyridine semicarbazone (0.240 g, 1 mmol) (de Lima et al., 2008), copper sulfate pentahydrate (0.249 g, 1 mmol) and sodium cyanate (0.065 g, 1 mmol) was heated for 5 h. The dark green solid was collected and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å and their displacement parameters refined. Only one H-atom is involved in the formation of a hydrogen bond.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of two molecules of [Cu(NCO)(C13H11N4O)] that are linked by Cu···Ncyanate interactions (dashed bonds), at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
(Cyanato-κN){1-[(E)-phenyl(pyridin-2-yl- κN)methylidene]semicarbazidato-κ2N1,O}copper(II) top
Crystal data top
[Cu(C13H11N4O)(NCO)]F(000) = 700
Mr = 344.82Dx = 1.709 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 838 reflections
a = 8.7601 (1) Åθ = 2.4–28.3°
b = 7.6732 (1) ŵ = 1.64 mm1
c = 20.0819 (3) ÅT = 293 K
β = 96.7467 (7)°Prism, dark green
V = 1340.52 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.638, Tmax = 0.735k = 99
11886 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.5121P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3069 reflectionsΔρmax = 0.37 e Å3
208 parametersΔρmin = 0.47 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0221 (17)
Crystal data top
[Cu(C13H11N4O)(NCO)]V = 1340.52 (3) Å3
Mr = 344.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7601 (1) ŵ = 1.64 mm1
b = 7.6732 (1) ÅT = 293 K
c = 20.0819 (3) Å0.30 × 0.25 × 0.20 mm
β = 96.7467 (7)°
Data collection top
Bruker Kappa APEXII
diffractometer
2728 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.031
Tmin = 0.638, Tmax = 0.735θmax = 27.5°
11886 measured reflectionsStandard reflections: 0
3069 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.37 e Å3
S = 1.03Δρmin = 0.47 e Å3
3069 reflectionsAbsolute structure: ?
208 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.31070 (2)0.50325 (3)0.506177 (10)0.03203 (12)
O10.28257 (17)0.3049 (2)0.56285 (6)0.0473 (4)
O20.5831 (2)0.6387 (3)0.67349 (8)0.0696 (6)
N10.26412 (17)0.6848 (2)0.43675 (7)0.0323 (3)
N20.13987 (16)0.38948 (19)0.45304 (7)0.0287 (3)
N30.09476 (17)0.2331 (2)0.47511 (7)0.0332 (3)
N40.1503 (3)0.0571 (3)0.56674 (9)0.0526 (5)
H410.078 (2)0.018 (3)0.5525 (15)0.057 (8)*
H420.196 (3)0.034 (4)0.6065 (8)0.059 (8)*
N50.47729 (18)0.6213 (2)0.56268 (8)0.0391 (4)
C10.3226 (2)0.8437 (3)0.43590 (10)0.0425 (4)
H10.39720.87730.47030.051*
C20.2763 (3)0.9611 (3)0.38550 (13)0.0480 (5)
H20.31781.07270.38620.058*
C30.1682 (2)0.9104 (3)0.33440 (11)0.0448 (5)
H30.13540.98750.29990.054*
C40.1084 (2)0.7441 (3)0.33435 (9)0.0383 (4)
H40.03640.70710.29950.046*
C50.15699 (19)0.6327 (2)0.38691 (8)0.0299 (3)
C60.09472 (19)0.4563 (3)0.39498 (8)0.0289 (3)
C70.00451 (19)0.3697 (2)0.34034 (8)0.0295 (3)
C80.0435 (2)0.3596 (3)0.27703 (9)0.0373 (4)
H80.13600.41060.26910.045*
C90.0453 (2)0.2744 (3)0.22558 (9)0.0438 (5)
H90.01190.26740.18340.053*
C100.1826 (2)0.2003 (3)0.23667 (10)0.0453 (5)
H100.24190.14240.20210.054*
C110.2324 (2)0.2114 (3)0.29881 (11)0.0438 (5)
H110.32630.16260.30600.053*
C120.1440 (2)0.2947 (3)0.35081 (9)0.0351 (4)
H120.17790.30060.39290.042*
C130.1784 (2)0.2042 (3)0.53522 (8)0.0369 (4)
C140.5253 (2)0.6252 (3)0.61718 (10)0.0396 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03601 (17)0.03610 (18)0.02273 (15)0.00921 (8)0.00184 (10)0.00184 (7)
O10.0603 (9)0.0532 (9)0.0253 (6)0.0211 (7)0.0086 (6)0.0083 (6)
O20.0639 (10)0.1105 (17)0.0313 (7)0.0030 (10)0.0079 (7)0.0060 (9)
N10.0361 (7)0.0323 (8)0.0282 (7)0.0055 (6)0.0017 (6)0.0025 (6)
N20.0310 (7)0.0321 (7)0.0227 (6)0.0053 (6)0.0020 (5)0.0012 (5)
N30.0399 (7)0.0341 (8)0.0250 (6)0.0089 (6)0.0013 (6)0.0017 (6)
N40.0713 (13)0.0508 (11)0.0329 (9)0.0212 (10)0.0060 (8)0.0121 (8)
N50.0370 (8)0.0480 (10)0.0316 (8)0.0072 (7)0.0011 (6)0.0007 (7)
C10.0503 (11)0.0374 (10)0.0396 (10)0.0124 (8)0.0041 (8)0.0064 (8)
C20.0609 (13)0.0314 (9)0.0536 (13)0.0093 (10)0.0149 (10)0.0014 (9)
C30.0528 (11)0.0375 (11)0.0452 (11)0.0039 (9)0.0104 (9)0.0092 (9)
C40.0400 (9)0.0381 (10)0.0358 (9)0.0018 (8)0.0002 (7)0.0037 (8)
C50.0295 (7)0.0314 (9)0.0288 (7)0.0007 (6)0.0034 (6)0.0017 (6)
C60.0270 (7)0.0332 (8)0.0261 (8)0.0013 (7)0.0014 (6)0.0013 (7)
C70.0296 (7)0.0297 (8)0.0273 (7)0.0003 (6)0.0041 (6)0.0010 (6)
C80.0344 (9)0.0473 (11)0.0295 (8)0.0053 (8)0.0008 (7)0.0012 (8)
C90.0500 (11)0.0512 (12)0.0285 (8)0.0002 (9)0.0031 (8)0.0051 (8)
C100.0465 (11)0.0454 (12)0.0396 (10)0.0040 (9)0.0142 (8)0.0070 (8)
C110.0317 (9)0.0455 (11)0.0515 (11)0.0083 (8)0.0062 (8)0.0002 (9)
C120.0309 (8)0.0368 (10)0.0368 (9)0.0022 (7)0.0013 (7)0.0002 (7)
C130.0456 (10)0.0403 (10)0.0247 (8)0.0078 (8)0.0039 (7)0.0023 (7)
C140.0350 (9)0.0442 (11)0.0398 (10)0.0061 (8)0.0060 (7)0.0032 (8)
Geometric parameters (Å, º) top
Cu1—O11.9335 (14)C2—H20.9300
Cu1—N21.9404 (14)C3—C41.379 (3)
Cu1—N51.9618 (16)C3—H30.9300
Cu1—N11.9790 (15)C4—C51.385 (2)
Cu1—N5i2.6225 (17)C4—H40.9300
O1—C131.272 (2)C5—C61.475 (2)
O2—C141.188 (2)C6—C71.475 (2)
N1—C11.324 (2)C7—C81.388 (2)
N1—C51.349 (2)C7—C121.388 (2)
N2—C61.293 (2)C8—C91.382 (3)
N2—N31.354 (2)C8—H80.9300
N3—C131.355 (2)C9—C101.372 (3)
N4—C131.331 (3)C9—H90.9300
N4—H410.876 (10)C10—C111.372 (3)
N4—H420.869 (10)C10—H100.9300
N5—C141.126 (2)C11—C121.382 (3)
C1—C21.380 (3)C11—H110.9300
C1—H10.9300C12—H120.9300
C2—C31.368 (3)
O1—Cu1—N279.99 (6)C3—C4—C5119.16 (18)
O1—Cu1—N599.25 (6)C3—C4—H4120.4
N2—Cu1—N5177.52 (6)C5—C4—H4120.4
O1—Cu1—N1159.83 (6)N1—C5—C4120.48 (17)
N2—Cu1—N181.22 (6)N1—C5—C6115.08 (15)
N5—Cu1—N199.23 (7)C4—C5—C6124.40 (16)
O1—Cu1—N5i99.82 (6)N2—C6—C7125.67 (17)
N2—Cu1—N5i95.41 (6)N2—C6—C5112.66 (15)
N5—Cu1—N5i87.05 (6)C7—C6—C5121.65 (15)
N1—Cu1—N5i89.15 (6)C8—C7—C12118.85 (16)
C13—O1—Cu1110.84 (11)C8—C7—C6119.40 (16)
C1—N1—C5119.97 (16)C12—C7—C6121.74 (16)
C1—N1—Cu1127.54 (13)C9—C8—C7120.43 (18)
C5—N1—Cu1112.47 (12)C9—C8—H8119.8
C6—N2—N3125.23 (14)C7—C8—H8119.8
C6—N2—Cu1116.88 (12)C10—C9—C8120.13 (19)
N3—N2—Cu1117.03 (10)C10—C9—H9119.9
N2—N3—C13106.76 (14)C8—C9—H9119.9
C13—N4—H41124 (2)C9—C10—C11120.02 (17)
C13—N4—H42121 (2)C9—C10—H10120.0
H41—N4—H42114 (3)C11—C10—H10120.0
C14—N5—Cu1137.89 (16)C10—C11—C12120.38 (18)
N1—C1—C2121.99 (19)C10—C11—H11119.8
N1—C1—H1119.0C12—C11—H11119.8
C2—C1—H1119.0C11—C12—C7120.18 (18)
C3—C2—C1118.8 (2)C11—C12—H12119.9
C3—C2—H2120.6C7—C12—H12119.9
C1—C2—H2120.6O1—C13—N4118.09 (17)
C2—C3—C4119.53 (19)O1—C13—N3125.08 (17)
C2—C3—H3120.2N4—C13—N3116.82 (17)
C4—C3—H3120.2N5—C14—O2175.1 (2)
N2—Cu1—O1—C133.55 (14)Cu1—N1—C5—C4179.09 (14)
N5—Cu1—O1—C13178.85 (14)C1—N1—C5—C6177.08 (16)
N1—Cu1—O1—C1325.1 (3)Cu1—N1—C5—C61.45 (19)
N5i—Cu1—O1—C1390.27 (14)C3—C4—C5—N11.5 (3)
O1—Cu1—N1—C1150.16 (19)C3—C4—C5—C6175.87 (18)
N2—Cu1—N1—C1171.58 (18)N3—N2—C6—C74.9 (3)
N5—Cu1—N1—C15.94 (18)Cu1—N2—C6—C7164.10 (13)
N5i—Cu1—N1—C192.81 (17)N3—N2—C6—C5176.72 (15)
O1—Cu1—N1—C528.2 (3)Cu1—N2—C6—C514.28 (19)
N2—Cu1—N1—C56.80 (12)N1—C5—C6—N28.2 (2)
N5—Cu1—N1—C5175.67 (12)C4—C5—C6—N2169.37 (17)
N5i—Cu1—N1—C588.80 (12)N1—C5—C6—C7170.28 (15)
O1—Cu1—N2—C6175.17 (14)C4—C5—C6—C712.2 (3)
N1—Cu1—N2—C612.18 (13)N2—C6—C7—C8126.9 (2)
N5i—Cu1—N2—C676.12 (14)C5—C6—C7—C851.4 (2)
O1—Cu1—N2—N35.25 (12)N2—C6—C7—C1251.9 (3)
N1—Cu1—N2—N3177.90 (13)C5—C6—C7—C12129.86 (18)
N5i—Cu1—N2—N393.80 (12)C12—C7—C8—C90.8 (3)
C6—N2—N3—C13174.42 (17)C6—C7—C8—C9178.00 (19)
Cu1—N2—N3—C135.43 (18)C7—C8—C9—C100.5 (3)
O1—Cu1—N5—C1422.4 (3)C8—C9—C10—C110.4 (3)
N1—Cu1—N5—C14149.4 (2)C9—C10—C11—C121.0 (3)
N5i—Cu1—N5—C14121.9 (3)C10—C11—C12—C70.8 (3)
C5—N1—C1—C20.7 (3)C8—C7—C12—C110.2 (3)
Cu1—N1—C1—C2177.57 (16)C6—C7—C12—C11178.62 (18)
N1—C1—C2—C31.0 (3)Cu1—O1—C13—N4176.97 (17)
C1—C2—C3—C40.0 (3)Cu1—O1—C13—N31.7 (3)
C2—C3—C4—C51.3 (3)N2—N3—C13—O12.4 (3)
C1—N1—C5—C40.6 (3)N2—N3—C13—N4178.93 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N3ii0.88 (1)2.27 (1)3.139 (2)173 (3)
Symmetry code: (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N3i0.88 (1)2.27 (1)3.139 (2)173 (3)
Symmetry code: (i) x, y, z+1.
Acknowledgements top

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

Lima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, o177.

Peŕez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18–23.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.