supplementary materials


bh2460 scheme

Acta Cryst. (2012). E68, m1457    [ doi:10.1107/S1600536812045114 ]

Bis[O-propan-2-yl (4-ethoxyphenyl)dithiophosphonato-[kappa]2S,S']nickel(II)

S. Sewpersad and W. E. Van Zyl

Abstract top

The title compound, [Ni(C11H16O2PS2)2], is a neutral four-coordinate mononuclear complex with a square-planar geometry. The complex lies on an inversion center. The metal atom is surrounded by two chelating isobidentate O-propan-2-yl (4-ethoxyphenyl)dithiophosphonate ligands in a trans configuration binding through the S-donor atoms. The Ni-S bond lengths are 2.2328 (5) and 2.2369 (5) Å, an insignificant difference to be considered anisobidentate. The Ni...P separation is 2.8224 (5) Å and the S-P bond lengths are 2.0035 (7) and 2.0053 (7) Å. The S-Ni-S (chelating) and S-Ni-S (trans) bond angles are 88.321 (18) and 180°. The Ni-S-P bond angles are 83.26 (2) and 83.33 (2)°, indicating a very minor distortion from ideal square-planar geometry for the Ni atom. The P atom, however, is distorted quite significantly from an ideal tetrahedral geometry, as reflected by the S-P-S and O-P-C bond angles of 101.93 (3) and 100.70 (7)°, respectively.

Comment top

The phosphor-1,1,-dithiolate class of compounds is the heavier and softer congener of the more popular phosphonate derivatives. It contains the S2P functionality as a common feature and several sub-categories are known which include the dithiophosphato [S2P(OR')2]¯, (typically, R' = alkyl), dithiophosphinato [S2PR2]¯ (R = alkyl or aryl), and dithiophosphonato [S2PR(OR')]¯, (typically, R = aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed. Amongst all metals involved in the coordination chemistry of dithiophosphonato ligands, however, nickel(II) is by far the best represented (Aragoni et al., 2007; Arca et al., 1997; Liu et al., 2004; Gray et al., 2004), with the first example dating back to 1945 (Malatesta & Pizzotti, 1945) whilst the first X-ray structural report of a nickel(II) dithiophosphonate complex reported more than 2 decades later (Hartung, 1967). The complex in the present study was formed from the reaction between NiCl2.6H20 and the ammonium salt of [S2P(OiPr)(4-C6H4OEt)] (molar ratio 1:2) in an aqueous/methanolic solution, the NH4Cl by-product was dissolved and the precipitated product filtered off and washed with water. General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010).

Related literature top

For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010). For examples of nickel(II) dithiophosphonate complexes, see: Liu et al. (2004); Gray et al. (2004); Aragoni et al. (2007); Arca et al. (1997); Malatesta & Pizzotti (1945); Hartung (1967).

Experimental top

A colorless methanol (40 ml) solution of NH4[S2P(OiPr)(4-C6H4OEt)] (982 mg, 3.347 mmol) was prepared. A second green solution of NiCl2.6H20 (399 mg, 1.679 mmol) in deionized water (20 ml) was prepared, and added to the colorless solution with stirring over a period of 5 min. This resulted in a purple precipitate indicating the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 × 10 ml) and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing purple powder. Purple crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 761 mg, 75%. M.p. 168–169°C.

31P NMR (CDCl3): δ (p.p.m.): 97.96. 1H NMR (CDCl3): δ (p.p.m.): 7.96 (2H, dd, o-ArH), 6.95 (2H, dd, m-ArH), 5.19 (1H, d quart, OCH), 4.06 (2H, quart, ArOCH2), 1.42 (3H, t, ArOCH2CH3), 1.38 (6H, d, CH3). 13C NMR (CDCl3): δ (p.p.m.): 162.22 (p-ArC), 131.71 (m-ArC), 128.04 (Ar—C1), 114.44 (o-ArC), 72.10 (CH), 63.76(ArOCH2), 24.30 (CH3), 14.67 (ArOCH2CH3).

Refinement top

All hydrogen atoms were found in the difference electron density maps and were placed in idealized positions and refined with geometrical constraints, with C—H bond lengths in the range 0.95-1.00 Å. The structure was refined to R factor of 0.0303.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, shown with 50% probability displacement ellipsoids.
Bis[O-propan-2-yl (4-ethoxyphenyl)dithiophosphonato-κ2S,S']nickel(II) top
Crystal data top
[Ni(C11H16O2PS2)2]Z = 1
Mr = 609.37F(000) = 318
Triclinic, P1Dx = 1.455 Mg m3
Hall symbol: -P 1Melting point: 441 K
a = 7.8893 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4178 (7) ÅCell parameters from 14410 reflections
c = 11.4825 (10) Åθ = 2.6–27.5°
α = 109.530 (4)°µ = 1.14 mm1
β = 101.959 (4)°T = 173 K
γ = 93.913 (5)°Block, purple
V = 695.22 (10) Å30.39 × 0.26 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
3062 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
1.2° φ scans and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 010
Tmin = 0.665, Tmax = 0.857k = 1010
14410 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.028P)2 + 0.2462P]
where P = (Fo2 + 2Fc2)/3
3062 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
0 constraints
Crystal data top
[Ni(C11H16O2PS2)2]γ = 93.913 (5)°
Mr = 609.37V = 695.22 (10) Å3
Triclinic, P1Z = 1
a = 7.8893 (6) ÅMo Kα radiation
b = 8.4178 (7) ŵ = 1.14 mm1
c = 11.4825 (10) ÅT = 173 K
α = 109.530 (4)°0.39 × 0.26 × 0.14 mm
β = 101.959 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3062 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2381 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.857Rint = 0.035
14410 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.27 e Å3
S = 1.02Δρmin = 0.31 e Å3
3062 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.02229 (10)
S10.64099 (6)0.75272 (6)0.02356 (5)0.02729 (13)
S20.58144 (7)0.38847 (6)0.18193 (5)0.02842 (13)
P10.64598 (6)0.63370 (6)0.15849 (5)0.02271 (12)
O10.19743 (19)0.8621 (2)0.53641 (14)0.0416 (4)
O20.82744 (15)0.67472 (17)0.18857 (12)0.0266 (3)
C10.5013 (2)0.7025 (2)0.26799 (17)0.0231 (4)
C20.4982 (3)0.8752 (3)0.2422 (2)0.0317 (5)
H20.56640.95510.16340.038*
C30.3977 (3)0.9335 (3)0.3289 (2)0.0336 (5)
H30.39761.05230.30990.040*
C40.2974 (2)0.8179 (3)0.44330 (19)0.0308 (5)
C50.2947 (3)0.6447 (3)0.4682 (2)0.0405 (6)
H50.22270.56470.54550.049*
C60.3960 (3)0.5880 (3)0.3815 (2)0.0360 (5)
H60.39370.46900.39960.043*
C70.2176 (3)1.0381 (3)0.5253 (2)0.0463 (6)
H7A0.34301.08340.50790.056*
H7B0.16961.10730.45480.056*
C80.1178 (3)1.0441 (4)0.6510 (3)0.0654 (8)
H8A0.16530.97340.72000.098*
H8B0.12991.16210.64820.098*
H8C0.00631.00080.66620.098*
C90.9927 (2)0.6387 (3)0.11992 (19)0.0302 (5)
H90.96930.60090.05020.036*
C101.1185 (3)0.8017 (3)0.0629 (3)0.0646 (8)
H10A1.13340.84470.13020.097*
H10B1.23190.78110.02110.097*
H10C1.07250.88630.00010.097*
C111.0541 (3)0.4983 (3)0.2128 (2)0.0567 (7)
H11A0.96420.39710.24810.085*
H11B1.16280.47110.16950.085*
H11C1.07580.53430.28190.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02098 (18)0.0252 (2)0.0246 (2)0.00292 (14)0.00633 (14)0.01367 (16)
S10.0299 (3)0.0276 (3)0.0257 (3)0.0000 (2)0.0069 (2)0.0119 (2)
S20.0343 (3)0.0258 (3)0.0305 (3)0.0050 (2)0.0128 (2)0.0138 (2)
P10.0197 (2)0.0268 (3)0.0260 (3)0.00378 (19)0.0065 (2)0.0145 (2)
O10.0440 (9)0.0502 (10)0.0364 (9)0.0170 (7)0.0024 (7)0.0253 (8)
O20.0170 (6)0.0397 (8)0.0333 (8)0.0077 (6)0.0074 (6)0.0248 (7)
C10.0184 (9)0.0282 (11)0.0257 (10)0.0047 (8)0.0065 (8)0.0125 (9)
C20.0288 (11)0.0299 (12)0.0315 (12)0.0026 (9)0.0009 (9)0.0100 (10)
C30.0329 (11)0.0284 (11)0.0413 (13)0.0073 (9)0.0041 (10)0.0170 (10)
C40.0259 (10)0.0406 (13)0.0323 (12)0.0111 (9)0.0076 (9)0.0198 (10)
C50.0466 (14)0.0352 (13)0.0292 (12)0.0069 (10)0.0062 (10)0.0073 (10)
C60.0407 (12)0.0283 (11)0.0355 (12)0.0090 (9)0.0008 (10)0.0112 (10)
C70.0392 (13)0.0601 (16)0.0630 (16)0.0159 (11)0.0154 (12)0.0483 (14)
C80.0461 (15)0.107 (2)0.082 (2)0.0262 (15)0.0198 (14)0.0779 (19)
C90.0194 (10)0.0415 (12)0.0363 (12)0.0080 (9)0.0029 (8)0.0240 (10)
C100.0313 (13)0.0465 (15)0.097 (2)0.0041 (11)0.0166 (14)0.0217 (16)
C110.0352 (13)0.0701 (18)0.0548 (17)0.0292 (12)0.0002 (12)0.0123 (14)
Geometric parameters (Å, º) top
Ni1—S22.2328 (5)C4—C51.387 (3)
Ni1—S2i2.2328 (5)C5—C61.378 (3)
Ni1—S1i2.2369 (5)C5—H50.9500
Ni1—S12.2369 (5)C6—H60.9500
Ni1—P12.8224 (5)C7—C81.513 (3)
Ni1—P1i2.8224 (5)C7—H7A0.9900
S1—P12.0035 (7)C7—H7B0.9900
S2—P12.0053 (7)C8—H8A0.9800
P1—O21.5828 (12)C8—H8B0.9800
P1—C11.7894 (18)C8—H8C0.9800
O1—C41.364 (2)C9—C111.489 (3)
O1—C71.438 (3)C9—C101.497 (3)
O2—C91.484 (2)C9—H91.0000
C1—C61.385 (3)C10—H10A0.9800
C1—C21.386 (3)C10—H10B0.9800
C2—C31.383 (3)C10—H10C0.9800
C2—H20.9500C11—H11A0.9800
C3—C41.381 (3)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
S2—Ni1—S2i180.0O1—C4—C5116.20 (19)
S2—Ni1—S1i91.679 (18)C3—C4—C5119.59 (18)
S2i—Ni1—S1i88.321 (18)C6—C5—C4120.3 (2)
S2—Ni1—S188.321 (18)C6—C5—H5119.8
S2i—Ni1—S191.679 (18)C4—C5—H5119.8
S1i—Ni1—S1180.0C5—C6—C1120.7 (2)
S2—Ni1—P144.885 (16)C5—C6—H6119.6
S2i—Ni1—P1135.115 (17)C1—C6—H6119.6
S1i—Ni1—P1135.174 (16)O1—C7—C8106.7 (2)
S1—Ni1—P144.827 (16)O1—C7—H7A110.4
S2—Ni1—P1i135.115 (16)C8—C7—H7A110.4
S2i—Ni1—P1i44.885 (16)O1—C7—H7B110.4
S1i—Ni1—P1i44.827 (16)C8—C7—H7B110.4
S1—Ni1—P1i135.173 (16)H7A—C7—H7B108.6
P1—Ni1—P1i180.0C7—C8—H8A109.5
P1—S1—Ni183.26 (2)C7—C8—H8B109.5
P1—S2—Ni183.33 (2)H8A—C8—H8B109.5
O2—P1—C1100.70 (7)C7—C8—H8C109.5
O2—P1—S1113.76 (6)H8A—C8—H8C109.5
C1—P1—S1113.38 (7)H8B—C8—H8C109.5
O2—P1—S2114.16 (6)O2—C9—C11107.84 (16)
C1—P1—S2113.47 (7)O2—C9—C10107.22 (17)
S1—P1—S2101.93 (3)C11—C9—C10113.9 (2)
O2—P1—Ni1141.40 (5)O2—C9—H9109.3
C1—P1—Ni1117.90 (6)C11—C9—H9109.3
S1—P1—Ni151.913 (17)C10—C9—H9109.3
S2—P1—Ni151.790 (18)C9—C10—H10A109.5
C4—O1—C7118.46 (17)C9—C10—H10B109.5
C9—O2—P1121.36 (11)H10A—C10—H10B109.5
C6—C1—C2118.40 (18)C9—C10—H10C109.5
C6—C1—P1121.83 (15)H10A—C10—H10C109.5
C2—C1—P1119.72 (15)H10B—C10—H10C109.5
C3—C2—C1121.31 (19)C9—C11—H11A109.5
C3—C2—H2119.3C9—C11—H11B109.5
C1—C2—H2119.3H11A—C11—H11B109.5
C4—C3—C2119.60 (19)C9—C11—H11C109.5
C4—C3—H3120.2H11A—C11—H11C109.5
C2—C3—H3120.2H11B—C11—H11C109.5
O1—C4—C3124.21 (19)
S2—Ni1—S1—P112.58 (2)S1—P1—O2—C958.46 (15)
S2i—Ni1—S1—P1167.42 (2)S2—P1—O2—C957.97 (15)
P1i—Ni1—S1—P1180.0Ni1—P1—O2—C90.38 (19)
S1i—Ni1—S2—P1167.43 (2)O2—P1—C1—C6101.89 (17)
S1—Ni1—S2—P112.57 (2)S1—P1—C1—C6136.21 (15)
P1i—Ni1—S2—P1180.0S2—P1—C1—C620.53 (18)
Ni1—S1—P1—O2137.71 (6)Ni1—P1—C1—C678.31 (17)
Ni1—S1—P1—C1107.99 (7)O2—P1—C1—C275.50 (16)
Ni1—S1—P1—S214.35 (3)S1—P1—C1—C246.41 (17)
Ni1—S2—P1—O2137.47 (6)S2—P1—C1—C2162.08 (14)
Ni1—S2—P1—C1107.90 (7)Ni1—P1—C1—C2104.30 (15)
Ni1—S2—P1—S114.37 (3)C6—C1—C2—C32.3 (3)
S2—Ni1—P1—O281.30 (9)P1—C1—C2—C3175.20 (15)
S2i—Ni1—P1—O298.70 (9)C1—C2—C3—C40.4 (3)
S1i—Ni1—P1—O299.27 (9)C7—O1—C4—C310.4 (3)
S1—Ni1—P1—O280.73 (9)C7—O1—C4—C5169.75 (19)
S2—Ni1—P1—C199.02 (8)C2—C3—C4—O1178.27 (18)
S2i—Ni1—P1—C180.98 (8)C2—C3—C4—C51.9 (3)
S1i—Ni1—P1—C181.05 (8)O1—C4—C5—C6177.9 (2)
S1—Ni1—P1—C198.95 (8)C3—C4—C5—C62.2 (3)
S2—Ni1—P1—S1162.03 (3)C4—C5—C6—C10.3 (3)
S2i—Ni1—P1—S117.97 (3)C2—C1—C6—C51.9 (3)
S1i—Ni1—P1—S1180.000 (1)P1—C1—C6—C5175.49 (17)
S2i—Ni1—P1—S2180.0C4—O1—C7—C8169.83 (18)
S1i—Ni1—P1—S217.97 (3)P1—O2—C9—C11112.06 (18)
S1—Ni1—P1—S2162.03 (3)P1—O2—C9—C10124.87 (18)
C1—P1—O2—C9179.91 (14)
Symmetry code: (i) x+1, y+1, z.
Acknowledgements top

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

references
References top

Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Soddu, S. & Verani, G. (2007). Dalton Trans. pp. 2127–2134.

Arca, M., Cornia, A., Devillanova, F. A., Fabretti, A. C., Isaia, F., Lippolis, V. & Verani, G. (1997). Inorg. Chim. Acta, 262, 81–84.

Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477–2486.

Hartung, H. (1967). Z. Chem. 7, 241.

Liu, H.-L., Mao, H.-Y., Xu, C., Zhang, H.-Y., Hou, H.-W., Wu, Q., Zhu, Y., Ye, B.-X. & Yuan, L.-J. (2004). Polyhedron, 23, 1799–1804.

Malatesta, L. & Pizzotti, R. (1945). Chim. Ind. (Milan), 27, 6–9.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.

Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.