organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-3-[(2-hy­dr­oxy­benzyl­­idene)amino]­prop­yl}ammonium chloride

aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: maldamen@ju.edu.jo

(Received 6 September 2012; accepted 2 November 2012; online 10 November 2012)

The title salt, C20H26N3O2+·Cl, lies across a twofold crystallographic axis with the central N atom of the cation and the chloride anion sitting on this axis, Z′ = 0.5. There is an intra­molecular hydrogen bond between the hy­droxy H atom and the imino N atom. The chloride anion and the cation are connected into chains along the a axis by an N—H⋯Cl hydrogen bond. In the crystal, the chains are linked via C—H⋯Cl interactions forming two-dimensional networks lying parallel to (101).

Related literature

For applications of similar ligands, see: Taha et al. (2011a[Taha, Z. A., Ajlouni, A. M., Al-Hassan, K. A., Hijazi, A. K. & Faiq, A. B. (2011a). Spectrochim. Acta Part A, 81, 317-323.],b[Taha, Z. A., Ajlouni, A. M., Al Momani, W. & Al-Ghzawi, A. A. (2011b). Spectrochim. Acta Part A, 81, 570-577.]). For analgous structures, see: Ramazani et al. (2006[Ramazani, A., Dolatyari, L., Morsali, A., Yilmaz, V. T. & Bueyuekguengoer, O. (2006). J. Iran. Chem. Soc., 3, 367-370.]); Cheng et al. (2009[Cheng, K., Zheng, Q., Qian, Y., Shi, L., Zhao, J. & Zhu, H. (2009). Bioorg. Med. Chem. 17, 7861-7871.]); Chen et al. (2011[Chen, Y., Ge, Y., Zhou, W., Ye, L., Gu, Z., Ma, G., Li, W., Li, H. & Cai, Y. (2011). Inorg. Chem. Commun. 14, 1228-1232.]); Pavel et al. (2007[Pavel, K., Kamenicek, J., Petricek, V., Kurecka, A., Kalinska, B. & Mrozinski, J. (2007). Polyhedron, 26, 535-542.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N3O2+·Cl

  • Mr = 375.88

  • Orthorhombic, P c c n

  • a = 4.9848 (3) Å

  • b = 38.714 (2) Å

  • c = 10.3299 (7) Å

  • V = 1993.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.52 × 0.37 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.94, Tmax = 0.992

  • 8874 measured reflections

  • 2040 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.150

  • S = 1.21

  • 2040 reflections

  • 119 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.91 2.22 3.128 (2) 176
O1—H1⋯N2 0.97 1.70 2.577 (4) 148
C1—H1C⋯Cl1i 0.97 2.70 3.642 (4) 164
Symmetry code: (i) [-x-{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Tetradentate Schiff bases are flexible ligands and difficult to crystallize and most of the crystal structures published for these ligands are complexes with transition metals or anthanides/actinides.

As far as we can determine there are no published structures for this type of ligand and published data for these types of ligand with antimicrobial or of interst because of their optical properies have been were has been obtained from solid state techniques like NMR or elemental analysis Taha et al. (2011a); Taha et al. (2011b). We crystallized (I) as salt. (Fig. 1). The molecule sits across a two-fold crystallographic axis with the ammonium nitrogen atom, N1, and the Cl anion sitting on the two-fold axis.

The bond lengths of N1—C1 and N2—C3 are 1.501 (4) and 1.456 (4) respectively indicate that these are single bonds and the bond length of N2—C4 (1.273 (4) Å) shows that this is a double bond exhibits a double bond. The distances are in agreement with other salicylic and dipropylamino ligands and complexes found in literature (Ramazani et al. (2006), Cheng et al. (2009), Pavel et al. (2007) & Chen et al. (2011)).

There is an intramolecular hydrogen bond between the phenolic oxygen, O1 and N2, Table 1, Fig1 The N1—HH1A···Cl1 hydrogen bond connects the chloride ion to two adjacent ligands to form chains which run parallel to the a axis, Table 1 and Fig. 1. In addition there is a short contact between C1 and Cl1, Table 1. There are no C–H···π interactions nor is there any π-π stacking.

Related literature top

For applications of similar ligands, see: Taha et al. (2011a,b). For analgous structures, see: Ramazani et al. (2006); Cheng et al. (2009); Chen et al. (2011); Pavel et al. (2007).

Experimental top

Facile condensation of 3,3 –Diaminodipropylamine and salicylaldehyde 1:2 molar ratio afforded a neutral condensate as following:

3,3 –Diaminodipropylamine (30 ml, 0.208 mol) was added dropwise to a solution of salicylaldehyde (50.7 g, 0.416 mol) in absolute ethanol (250 ml); the solution became instantly yellow. The mixture was heated for 1 h at 50°C. Evaporation of the solvent under reduced pressure afforded the desired compound in 95% yield as yellow oil. The obtained Schiff base was then mixed with cyanuric acid in ethanol with few drops of 1M HCl added. The mixture then stir heated (40°C) for 24 then filtered. After few days crystals suitable for X-ray diffraction were formed.

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.93Å and C—H(CH2), 0.97Å, with Uiso = 1.2Ueq(C). The hydrogens attached N1 and O1 were located on a difference map and refined as riding atoms with Uiso = 1.2Ueq(N1) and Uiso = 1.5Ueq(O1). The positions of these latter atoms was confirmed on a final difference map. The position of the Cl anion was chosen so that it formed a hydrogen bonded asymmetric unit.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric units and the atom-numbering schemes for (I) with thermal displacement ellipsoids at 30% probability (except hydrogens).
[Figure 2] Fig. 2. View of the molecular acking diagram, view perpendicular to the bc plane.
Bis{(E)-3-[(2-hydroxybenzylidene)amino]propyl}ammonium chloride top
Crystal data top
C20H26N3O2+·ClDx = 1.252 Mg m3
Mr = 375.88Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, PccnCell parameters from 2556 reflections
a = 4.9848 (3) Åθ = 3.7–26.3°
b = 38.714 (2) ŵ = 0.21 mm1
c = 10.3299 (7) ÅT = 100 K
V = 1993.5 (2) Å3Prism, white
Z = 40.52 × 0.37 × 0.04 mm
F(000) = 800
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
2040 independent reflections
Radiation source: fine-focus sealed tube1654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.0122 pixels mm-1θmax = 26.4°, θmin = 4.0°
ω scansh = 65
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
k = 4848
Tmin = 0.94, Tmax = 0.992l = 1212
8874 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150Only H-atom displacement parameters refined
S = 1.21 w = 1/[σ2(Fo2) + (0.0141P)2 + 6.1394P]
where P = (Fo2 + 2Fc2)/3
2040 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
C20H26N3O2+·ClV = 1993.5 (2) Å3
Mr = 375.88Z = 4
Orthorhombic, PccnMo Kα radiation
a = 4.9848 (3) ŵ = 0.21 mm1
b = 38.714 (2) ÅT = 100 K
c = 10.3299 (7) Å0.52 × 0.37 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
2040 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
1654 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.992Rint = 0.049
8874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.150Only H-atom displacement parameters refined
S = 1.21Δρmax = 0.39 e Å3
2040 reflectionsΔρmin = 0.88 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1873 (5)0.13196 (7)0.8454 (3)0.0340 (7)
H10.07400.14600.79000.051*
N10.25000.25000.5049 (4)0.0174 (8)
H1A0.10100.25080.55600.021*
N20.1804 (6)0.14754 (7)0.6799 (3)0.0229 (7)
C10.2328 (7)0.21793 (8)0.4236 (3)0.0213 (7)
H1B0.40940.21260.38970.026*
H1C0.11500.22230.35070.026*
C20.1289 (7)0.18696 (8)0.4984 (3)0.0230 (8)
H2A0.08610.16880.43730.028*
H2B0.03640.19350.54140.028*
C30.3212 (7)0.17249 (9)0.5993 (3)0.0236 (8)
H3A0.47160.16140.55660.028*
H3B0.39010.19110.65260.028*
C40.2480 (7)0.11586 (8)0.6762 (3)0.0226 (7)
H40.38850.10920.62250.027*
C50.1112 (7)0.08970 (9)0.7539 (3)0.0234 (8)
C60.1012 (7)0.09900 (9)0.8369 (3)0.0257 (8)
C70.2244 (9)0.07364 (10)0.9119 (4)0.0345 (9)
H70.36350.07960.96760.041*
C80.1417 (9)0.03980 (11)0.9042 (4)0.0388 (10)
H80.22600.02310.95470.047*
C90.0656 (9)0.03018 (10)0.8224 (4)0.0394 (10)
H90.12050.00730.81770.047*
C100.1893 (8)0.05520 (9)0.7478 (4)0.0325 (9)
H100.32780.04890.69240.039*
Cl10.25000.25000.68790 (11)0.0223 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0353 (16)0.0380 (14)0.0286 (15)0.0007 (12)0.0106 (13)0.0020 (12)
N10.0110 (18)0.0282 (19)0.0131 (19)0.0011 (17)0.0000.000
N20.0248 (16)0.0259 (14)0.0180 (15)0.0025 (12)0.0038 (13)0.0005 (12)
C10.0195 (16)0.0289 (17)0.0156 (16)0.0015 (15)0.0012 (14)0.0030 (13)
C20.0200 (18)0.0259 (17)0.0230 (19)0.0021 (14)0.0039 (15)0.0010 (14)
C30.0235 (19)0.0263 (17)0.0208 (18)0.0040 (14)0.0011 (15)0.0029 (14)
C40.0210 (17)0.0310 (17)0.0158 (16)0.0000 (15)0.0007 (15)0.0017 (14)
C50.0202 (18)0.0298 (18)0.0201 (18)0.0024 (14)0.0037 (15)0.0004 (14)
C60.0252 (19)0.0342 (19)0.0178 (18)0.0038 (16)0.0034 (15)0.0008 (15)
C70.031 (2)0.048 (2)0.024 (2)0.0092 (19)0.0037 (18)0.0034 (17)
C80.037 (2)0.045 (2)0.035 (2)0.0136 (19)0.0037 (19)0.0133 (19)
C90.045 (3)0.030 (2)0.043 (3)0.0001 (18)0.000 (2)0.0099 (18)
C100.032 (2)0.0319 (19)0.033 (2)0.0000 (17)0.0020 (18)0.0014 (17)
Cl10.0132 (5)0.0368 (6)0.0169 (5)0.0037 (5)0.0000.000
Geometric parameters (Å, º) top
O1—C61.349 (4)C3—H3B0.9700
O1—H10.9705C4—C51.461 (5)
N1—C1i1.501 (4)C4—H40.9300
N1—C11.501 (4)C5—C101.393 (5)
N1—H1A0.9117C5—C61.409 (5)
N2—C41.272 (4)C6—C71.394 (5)
N2—C31.456 (4)C7—C81.376 (6)
C1—C21.518 (4)C7—H70.9300
C1—H1B0.9700C8—C91.386 (6)
C1—H1C0.9700C8—H80.9300
C2—C31.522 (5)C9—C101.383 (5)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—H100.9300
C3—H3A0.9700
C6—O1—H1107.8H3A—C3—H3B108.2
C1i—N1—C1112.0 (3)N2—C4—C5121.8 (3)
C1i—N1—H1A110.0N2—C4—H4119.1
C1—N1—H1A107.8C5—C4—H4119.1
C4—N2—C3119.6 (3)C10—C5—C6118.8 (3)
N1—C1—C2112.8 (3)C10—C5—C4120.6 (3)
N1—C1—H1B109.0C6—C5—C4120.5 (3)
C2—C1—H1B109.0O1—C6—C7119.3 (3)
N1—C1—H1C109.0O1—C6—C5121.3 (3)
C2—C1—H1C109.0C7—C6—C5119.3 (3)
H1B—C1—H1C107.8C8—C7—C6120.4 (4)
C1—C2—C3115.1 (3)C8—C7—H7119.8
C1—C2—H2A108.5C6—C7—H7119.8
C3—C2—H2A108.5C7—C8—C9121.0 (4)
C1—C2—H2B108.5C7—C8—H8119.5
C3—C2—H2B108.5C9—C8—H8119.5
H2A—C2—H2B107.5C10—C9—C8119.0 (4)
N2—C3—C2109.4 (3)C10—C9—H9120.5
N2—C3—H3A109.8C8—C9—H9120.5
C2—C3—H3A109.8C9—C10—C5121.5 (4)
N2—C3—H3B109.8C9—C10—H10119.3
C2—C3—H3B109.8C5—C10—H10119.3
C1i—N1—C1—C2161.9 (3)C10—C5—C6—C71.0 (5)
N1—C1—C2—C370.5 (4)C4—C5—C6—C7178.7 (3)
C4—N2—C3—C2114.2 (3)O1—C6—C7—C8179.5 (4)
C1—C2—C3—N2169.3 (3)C5—C6—C7—C80.6 (6)
C3—N2—C4—C5179.2 (3)C6—C7—C8—C90.2 (6)
N2—C4—C5—C10180.0 (3)C7—C8—C9—C100.0 (6)
N2—C4—C5—C60.4 (5)C8—C9—C10—C50.4 (6)
C10—C5—C6—O1179.2 (3)C6—C5—C10—C90.8 (6)
C4—C5—C6—O11.2 (5)C4—C5—C10—C9178.8 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.912.223.128 (2)176
O1—H1···N20.971.702.577 (4)148
C1—H1C···Cl1ii0.972.703.642 (4)164
Symmetry code: (ii) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC20H26N3O2+·Cl
Mr375.88
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)100
a, b, c (Å)4.9848 (3), 38.714 (2), 10.3299 (7)
V3)1993.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.52 × 0.37 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.94, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
8874, 2040, 1654
Rint0.049
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.150, 1.21
No. of reflections2040
No. of parameters119
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.88

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.912.223.128 (2)176
O1—H1···N20.971.702.577 (4)148
C1—H1C···Cl1i0.972.703.642 (4)164
Symmetry code: (i) x1/2, y, z1/2.
 

References

First citationChen, Y., Ge, Y., Zhou, W., Ye, L., Gu, Z., Ma, G., Li, W., Li, H. & Cai, Y. (2011). Inorg. Chem. Commun. 14, 1228–1232.  Web of Science CSD CrossRef CAS
First citationCheng, K., Zheng, Q., Qian, Y., Shi, L., Zhao, J. & Zhu, H. (2009). Bioorg. Med. Chem. 17, 7861–7871.  Web of Science CSD CrossRef PubMed CAS
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationPavel, K., Kamenicek, J., Petricek, V., Kurecka, A., Kalinska, B. & Mrozinski, J. (2007). Polyhedron, 26, 535–542.
First citationRamazani, A., Dolatyari, L., Morsali, A., Yilmaz, V. T. & Bueyuekguengoer, O. (2006). J. Iran. Chem. Soc., 3, 367-370.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTaha, Z. A., Ajlouni, A. M., Al-Hassan, K. A., Hijazi, A. K. & Faiq, A. B. (2011a). Spectrochim. Acta Part A, 81, 317–323.  CrossRef CAS
First citationTaha, Z. A., Ajlouni, A. M., Al Momani, W. & Al-Ghzawi, A. A. (2011b). Spectrochim. Acta Part A, 81, 570–577.  CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds