supplementary materials


hy2599 scheme

Acta Cryst. (2012). E68, m1505    [ doi:10.1107/S1600536812045679 ]

catena-Poly[[[diaquacopper(II)]-bis[[mu]-1,5-bis(1H-imidazol-1-yl)pentane-[kappa]2N3:N3']] naphthalene-1,5-disulfonate]

L.-P. Zhang, S.-T. Wen and X.-N. Fu

Abstract top

In the title complex, {[Cu(C11H16N4)2(H2O)2](C10H6O6S2)}n, the CuII atom, lying on an inversion center, is six-coordinated by two water molecules and four N atoms from four 1,5-bis(1H-imidazol-1-yl)pentane (biim-5) ligands in a distorted octahedral geometry. Adjacent CuII atoms are linked by two biim-5 ligands, forming a chain along [111]. Two atoms of the pentane group are disordered over two sets of sites, with an occupancy ratio of 0.554 (18):0.446 (18). Intermolecular O-H...O hydrogen bonds link the chains and the centrosymmetric naphthalene-1,5-disulfonate anions into a layer structure parallel to (0-11).

Comment top

There is currently much interest in adopting N-donor ligands as second ligands to prepare new metal-organic coordination polymers because of their special coordination character (Kesanli et al., 2005). Among the N-donor bridging ligands, bis(imidazole) ligands, as an important family of flexible N-donor ligands, have attracted great interest. The main reason is that the flexible nature of the alkyl spacer allows the backbone of the bis(imidazole) ligand to bend and rotate freely so as to conform to the coordination geometries of central metal atoms (Wei et al., 2008). As a result, the bis(imidazole) ligands, especially 1,1'-(1,4-butanediyl)bis(imidazole) (biim-4), have widely introduced into the construction of coordination polymers (Zhang et al., 2010). Compared with the biim-4 ligand, 1,1'-(1,5-pentanediyl)bis(imidazole) (biim-5) ligand, bearing a longer methylene (-CH2-)5 skeleton, tends to exhibit more flexible conformations. Although compounds based on carboxylate ions and biim-5 have been reported widely, the compounds consist of sulfonate ions are relatively rare.

The asymmetric unit of the title compound contains a half of CuII ion, a half of naphthalene-1,5-disulfonate (1,5-nds) anion, one biim-5 ligand and one water molecule. As illustrated in Fig. 1, the CuII ion is six-coordinated by four N atoms from four biim-5 ligands and two water O atoms, furnishing a distorted octahedral geometry. The adjacent CuII atoms are linked by two biim-5 ligands, forming a chain along [1 1 1]. Intermolecular O—H···O hydrogen bonds link the chains and the 1,5-nds anions into a layer structure parallel to (0 -1 1).

Related literature top

For background to metal-organic coordination polymers with N-donor ligands, see: Kesanli et al. (2005); Wei et al. (2008); Zhang et al. (2010).

Experimental top

A mixture of Cu(CH3COO)2.H2O (39.9 mg, 0.2 mmol), naphthalene-1,5-disulfonic acid (57.7 mg, 0.2 mmol) and biim-5 (41.2 mg, 0.2 mmol) was added to water (7 ml). After stirring for 15 min, the precipitate was dissolved by dropwise addition of an aqueous solution of NH3 (14M, 3 ml). Blue crystals were obtained after allowing the solution to stand at room temperature for several days.

Refinement top

All H atoms on C atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C). The disorder of C4 and C5 each over two sites was refined to an occupancy ratio of 0.554 (18):0.446 (18). H atoms of water molecules were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms and minor disordered sites have been omitted for clarity. [Symmetry codes: (i) 1-x, 2-y, 2-z; (ii) 1+x, 1+y, 1+z; (iii) -x, -y, -z; (iv) 1-x, 1-y, 1-z.]
catena-Poly[[[diaquacopper(II)]-bis[µ-1,5-bis(1H-imidazol-1- yl)pentane-κ2N3:N3']] naphthalene-1,5-disulfonate] top
Crystal data top
[Cu(C11H16N4)2(H2O)2](C10H6O6S2)Z = 1
Mr = 790.37F(000) = 411
Triclinic, P1Dx = 1.489 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 9.300 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.880 (5) ÅCell parameters from 3995 reflections
c = 11.020 (5) Åθ = 3.0–27.5°
α = 95.490 (5)°µ = 0.80 mm1
β = 102.930 (5)°T = 293 K
γ = 114.000 (5)°Block, blue
V = 881.5 (8) Å30.41 × 0.33 × 0.21 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3995 independent reflections
Radiation source: fine-focus sealed tube2218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.970, Tmax = 0.980l = 1314
8706 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0505P)2 + 1.4149P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3995 reflectionsΔρmax = 0.52 e Å3
258 parametersΔρmin = 0.62 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
[Cu(C11H16N4)2(H2O)2](C10H6O6S2)γ = 114.000 (5)°
Mr = 790.37V = 881.5 (8) Å3
Triclinic, P1Z = 1
a = 9.300 (5) ÅMo Kα radiation
b = 9.880 (5) ŵ = 0.80 mm1
c = 11.020 (5) ÅT = 293 K
α = 95.490 (5)°0.41 × 0.33 × 0.21 mm
β = 102.930 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3995 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2218 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.076
8706 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167Δρmax = 0.52 e Å3
S = 1.03Δρmin = 0.62 e Å3
3995 reflectionsAbsolute structure: ?
258 parametersFlack parameter: ?
4 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.50000.50000.50000.0421 (3)
C10.2899 (6)0.3794 (7)0.2360 (5)0.0641 (17)
H10.19910.36560.26460.077*
C20.5349 (6)0.4438 (6)0.2291 (5)0.0485 (13)
H20.64900.48410.25380.058*
C30.4368 (7)0.3741 (8)0.1108 (5)0.0675 (18)
H30.46930.35730.03910.081*
C40.1318 (13)0.1980 (15)0.0189 (10)0.053 (4)0.554 (18)
H4A0.16030.11710.00480.063*0.554 (18)
H4B0.03990.15840.05430.063*0.554 (18)
C50.0905 (13)0.2632 (15)0.0932 (11)0.058 (4)0.554 (18)
H5A0.17930.29740.13220.069*0.554 (18)
H5B0.06640.34700.06940.069*0.554 (18)
C4'0.1284 (16)0.305 (2)0.0057 (13)0.056 (5)0.446 (18)
H4'10.03320.28550.03620.068*0.446 (18)
H4'20.14940.39080.03550.068*0.446 (18)
C5'0.1049 (18)0.1697 (19)0.0814 (16)0.065 (5)0.446 (18)
H5'10.10070.08900.03650.078*0.446 (18)
H5'20.19290.19350.12120.078*0.446 (18)
C60.0690 (7)0.1223 (9)0.1858 (6)0.082 (2)
C70.1086 (8)0.2045 (7)0.2907 (6)0.078 (2)
H7A0.10190.30000.25170.094*
H7B0.02730.22670.33700.094*
C80.2770 (7)0.1114 (6)0.3822 (5)0.0565 (15)
H8A0.35850.09440.33640.068*
H8B0.29670.16790.44610.068*
C90.2189 (6)0.0582 (6)0.5301 (5)0.0482 (13)
H90.14360.01500.56050.058*
C110.3937 (6)0.1703 (6)0.4280 (5)0.0445 (12)
H110.45990.18530.37380.053*
C100.2722 (6)0.2088 (6)0.5604 (5)0.0511 (13)
H100.23860.25770.61640.061*
C120.4074 (6)0.7806 (6)1.1100 (5)0.0474 (13)
H120.39430.71511.16640.057*
C130.2935 (6)0.7343 (5)0.9885 (5)0.0432 (12)
H130.20510.63850.96570.052*
C140.3102 (5)0.8269 (5)0.9041 (4)0.0349 (11)
C150.4423 (5)0.9768 (5)0.9385 (4)0.0366 (11)
C160.4633 (6)1.0791 (6)0.8548 (4)0.0422 (12)
H160.38761.05000.77480.051*
N20.2814 (6)0.3331 (7)0.1160 (4)0.0786 (18)
N10.4413 (5)0.4466 (4)0.3081 (4)0.0413 (10)
N30.2978 (5)0.0341 (4)0.4455 (4)0.0411 (10)
N40.3829 (5)0.2802 (5)0.4970 (4)0.0426 (10)
O10.0560 (4)0.6024 (4)0.7469 (4)0.0597 (10)
O20.2596 (4)0.7717 (4)0.6604 (3)0.0529 (10)
O30.0816 (4)0.8556 (4)0.7419 (3)0.0544 (10)
S10.16398 (15)0.75847 (15)0.75061 (12)0.0442 (4)
O1W0.2295 (5)0.5212 (5)0.4900 (4)0.0657 (12)
H1A0.217 (7)0.588 (6)0.542 (5)0.099*
H1B0.144 (5)0.486 (7)0.420 (3)0.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0430 (5)0.0387 (5)0.0300 (5)0.0065 (4)0.0085 (4)0.0002 (3)
C10.035 (3)0.098 (5)0.038 (3)0.015 (3)0.009 (3)0.007 (3)
C20.036 (3)0.062 (4)0.037 (3)0.016 (2)0.007 (2)0.000 (2)
C30.055 (3)0.102 (5)0.032 (3)0.025 (3)0.015 (3)0.006 (3)
C40.054 (6)0.051 (8)0.035 (7)0.012 (5)0.002 (5)0.004 (5)
C50.057 (7)0.049 (8)0.047 (8)0.017 (6)0.007 (6)0.004 (5)
C4'0.046 (7)0.068 (12)0.039 (9)0.023 (7)0.006 (6)0.007 (7)
C5'0.074 (10)0.046 (9)0.061 (11)0.034 (8)0.011 (8)0.009 (7)
C60.054 (4)0.104 (6)0.046 (4)0.018 (4)0.020 (3)0.015 (3)
C70.070 (4)0.050 (4)0.074 (4)0.004 (3)0.019 (4)0.027 (3)
C80.072 (4)0.045 (3)0.053 (3)0.027 (3)0.016 (3)0.010 (3)
C90.049 (3)0.046 (3)0.045 (3)0.012 (2)0.021 (3)0.009 (2)
C110.041 (3)0.044 (3)0.040 (3)0.012 (2)0.009 (2)0.005 (2)
C100.054 (3)0.050 (3)0.048 (3)0.017 (3)0.027 (3)0.005 (2)
C120.057 (3)0.042 (3)0.044 (3)0.018 (3)0.022 (3)0.013 (2)
C130.042 (3)0.032 (3)0.048 (3)0.010 (2)0.016 (2)0.002 (2)
C140.027 (2)0.038 (3)0.035 (2)0.012 (2)0.008 (2)0.001 (2)
C150.033 (2)0.038 (3)0.037 (2)0.016 (2)0.0092 (19)0.003 (2)
C160.045 (3)0.043 (3)0.036 (3)0.019 (2)0.008 (2)0.007 (2)
N20.038 (2)0.133 (5)0.030 (2)0.016 (3)0.001 (2)0.015 (3)
N10.038 (2)0.042 (2)0.036 (2)0.0116 (18)0.0102 (19)0.0011 (17)
N30.040 (2)0.038 (2)0.035 (2)0.0113 (19)0.0035 (18)0.0040 (17)
N40.046 (2)0.040 (2)0.036 (2)0.0132 (19)0.0129 (19)0.0054 (18)
O10.048 (2)0.045 (2)0.059 (2)0.0027 (17)0.0022 (18)0.0011 (17)
O20.052 (2)0.059 (2)0.042 (2)0.0200 (18)0.0161 (17)0.0015 (16)
O30.044 (2)0.062 (2)0.057 (2)0.0268 (19)0.0090 (18)0.0094 (18)
S10.0364 (7)0.0429 (8)0.0408 (7)0.0108 (6)0.0052 (6)0.0013 (5)
O1W0.055 (2)0.068 (3)0.059 (3)0.028 (2)0.001 (2)0.015 (2)
Geometric parameters (Å, º) top
Cu—N4i1.988 (4)C8—N31.453 (6)
Cu—N12.021 (4)C8—H8A0.9700
Cu—O1W2.587 (5)C8—H8B0.9700
C1—N11.302 (6)C9—C101.343 (7)
C1—N21.331 (7)C9—N31.367 (6)
C1—H10.9300C9—H90.9300
C2—C31.339 (7)C11—N41.316 (6)
C2—N11.368 (6)C11—N31.339 (6)
C2—H20.9300C11—H110.9300
C3—N21.350 (7)C10—N41.368 (6)
C3—H30.9300C10—H100.9300
C4—C51.49 (2)C12—C16ii1.360 (7)
C4—N21.553 (11)C12—C131.406 (7)
C4—H4A0.9700C12—H120.9300
C4—H4B0.9700C13—C141.355 (6)
C5—C61.597 (12)C13—H130.9300
C5—H5A0.9700C14—C151.432 (6)
C5—H5B0.9700C14—S11.781 (4)
C4'—C5'1.48 (3)C15—C161.417 (6)
C4'—N21.555 (14)C15—C15ii1.425 (9)
C4'—H4'10.9700C16—C12ii1.360 (7)
C4'—H4'20.9700C16—H160.9300
C5'—C61.615 (15)N4—Cuiii1.988 (4)
C5'—H5'10.9700O1—S11.448 (4)
C5'—H5'20.9700O2—S11.457 (4)
C6—C71.537 (10)O3—S11.449 (4)
C7—C81.504 (7)O1W—H1A0.89 (6)
C7—H7A0.9700O1W—H1B0.89 (4)
C7—H7B0.9700
N4i—Cu—N4iv180.000 (1)N3—C8—C7112.9 (5)
N4i—Cu—N1v91.92 (16)N3—C8—H8A109.0
N4iv—Cu—N1v88.08 (16)C7—C8—H8A109.0
N4i—Cu—N188.08 (16)N3—C8—H8B109.0
N4iv—Cu—N191.92 (16)C7—C8—H8B109.0
N1v—Cu—N1180.000 (1)H8A—C8—H8B107.8
O1W—Cu—N191.80 (17)C10—C9—N3106.1 (5)
O1W—Cu—N4iv91.02 (18)C10—C9—H9127.0
O1W—Cu—N4i88.98 (18)N3—C9—H9127.0
O1W—Cu—O1Wv180.00N4—C11—N3111.7 (5)
O1W—Cu—N1v88.20 (17)N4—C11—H11124.2
N1—C1—N2111.5 (5)N3—C11—H11124.2
N1—C1—H1124.3C9—C10—N4110.3 (5)
N2—C1—H1124.3C9—C10—H10124.8
C3—C2—N1109.5 (5)N4—C10—H10124.8
C3—C2—H2125.3C16ii—C12—C13120.1 (5)
N1—C2—H2125.3C16ii—C12—H12120.0
C2—C3—N2106.4 (5)C13—C12—H12120.0
C2—C3—H3126.8C14—C13—C12121.2 (4)
N2—C3—H3126.8C14—C13—H13119.4
C5—C4—N2104.6 (10)C12—C13—H13119.4
C5—C4—H4A110.8C13—C14—C15120.5 (4)
N2—C4—H4A110.8C13—C14—S1118.6 (4)
C5—C4—H4B110.8C15—C14—S1120.9 (4)
N2—C4—H4B110.8C16—C15—C15ii119.2 (5)
H4A—C4—H4B108.9C16—C15—C14122.7 (4)
C4—C5—C6102.3 (10)C15ii—C15—C14118.1 (5)
C4—C5—H5A111.3C12ii—C16—C15120.9 (5)
C6—C5—H5A111.3C12ii—C16—H16119.5
C4—C5—H5B111.3C15—C16—H16119.5
C6—C5—H5B111.3C1—N2—C3107.3 (4)
H5A—C5—H5B109.2C1—N2—C4125.1 (6)
C5'—C4'—N2102.7 (13)C3—N2—C4122.1 (6)
C5'—C4'—H4'1111.2C1—N2—C4'120.2 (7)
N2—C4'—H4'1111.2C3—N2—C4'127.6 (7)
C5'—C4'—H4'2111.2C1—N1—C2105.4 (4)
N2—C4'—H4'2111.2C1—N1—Cu122.5 (4)
H4'1—C4'—H4'2109.1C2—N1—Cu131.1 (3)
C4'—C5'—C6103.8 (12)C11—N3—C9106.9 (4)
C4'—C5'—H5'1111.0C11—N3—C8126.2 (5)
C6—C5'—H5'1111.0C9—N3—C8126.8 (5)
C4'—C5'—H5'2111.0C11—N4—C10105.0 (4)
C6—C5'—H5'2111.0C11—N4—Cuiii126.0 (4)
H5'1—C5'—H5'2109.0C10—N4—Cuiii129.0 (4)
C7—C6—C597.8 (7)O1—S1—O3113.4 (2)
C7—C6—C5'128.2 (9)O1—S1—O2112.4 (2)
C8—C7—C6112.0 (5)O3—S1—O2113.0 (2)
C8—C7—H7A109.2O1—S1—C14105.8 (2)
C6—C7—H7A109.2O3—S1—C14105.9 (2)
C8—C7—H7B109.2O2—S1—C14105.5 (2)
C6—C7—H7B109.2H1A—O1W—H1B107 (5)
H7A—C7—H7B107.9
N1—C2—C3—N20.1 (7)C5—C4—N2—C4'28.3 (11)
N2—C4—C5—C6177.0 (7)C5'—C4'—N2—C1142.0 (11)
N2—C4'—C5'—C6171.5 (9)C5'—C4'—N2—C366.1 (17)
C4—C5—C6—C7175.4 (10)C5'—C4'—N2—C431.9 (11)
C4—C5—C6—C5'34.7 (13)N2—C1—N1—C20.5 (7)
C4'—C5'—C6—C770.9 (16)N2—C1—N1—Cu169.3 (4)
C4'—C5'—C6—C531.7 (12)C3—C2—N1—C10.2 (7)
C5—C6—C7—C8167.3 (7)C3—C2—N1—Cu168.3 (4)
C5'—C6—C7—C8170.4 (9)N4i—Cu—N1—C161.3 (5)
C6—C7—C8—N359.1 (7)N4iv—Cu—N1—C1118.7 (5)
N3—C9—C10—N40.1 (6)N4i—Cu—N1—C2105.5 (5)
C16ii—C12—C13—C140.5 (8)N4iv—Cu—N1—C274.5 (5)
C12—C13—C14—C152.0 (7)N4—C11—N3—C90.7 (5)
C12—C13—C14—S1178.4 (4)N4—C11—N3—C8178.5 (4)
C13—C14—C15—C16178.6 (5)C10—C9—N3—C110.3 (5)
S1—C14—C15—C160.9 (6)C10—C9—N3—C8178.1 (5)
C13—C14—C15—C15ii2.1 (8)C7—C8—N3—C11111.1 (6)
S1—C14—C15—C15ii178.3 (4)C7—C8—N3—C966.2 (7)
C15ii—C15—C16—C12ii0.8 (8)N3—C11—N4—C100.7 (5)
C14—C15—C16—C12ii178.5 (5)N3—C11—N4—Cuiii179.0 (3)
N1—C1—N2—C30.5 (8)C9—C10—N4—C110.5 (6)
N1—C1—N2—C4153.4 (8)C9—C10—N4—Cuiii178.7 (3)
N1—C1—N2—C4'157.5 (9)C13—C14—S1—O13.7 (5)
C2—C3—N2—C10.3 (8)C15—C14—S1—O1176.8 (4)
C2—C3—N2—C4154.5 (8)C13—C14—S1—O3117.0 (4)
C2—C3—N2—C4'155.1 (10)C15—C14—S1—O362.6 (4)
C5—C4—N2—C1125.9 (9)C13—C14—S1—O2123.0 (4)
C5—C4—N2—C383.8 (12)C15—C14—S1—O257.4 (4)
Symmetry codes: (i) x, y, z; (ii) x+1, y+2, z+2; (iii) x1, y1, z1; (iv) x+1, y+1, z+1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.89 (6)1.97 (6)2.836 (6)163 (6)
O1W—H1B···O1vi0.89 (4)2.11 (4)3.001 (6)178 (7)
Symmetry code: (vi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.89 (6)1.97 (6)2.836 (6)163 (6)
O1W—H1B···O1i0.89 (4)2.11 (4)3.001 (6)178 (7)
Symmetry code: (i) x, y+1, z+1.
Acknowledgements top

We thank the Science and Technology Key Projects for Technological Research on Preparation and Application of TiO2, Henan Province (grant No. 0624270006), for support.

references
References top

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kesanli, B., Cui, Y., Smith, M. R., Bittner, E. W., Bockrath, B. C. & Lin, W. B. (2005). Angew. Chem. Int. Ed. 44, 72–75.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wei, G.-H., Yang, J., Ma, J.-F., Liu, Y.-Y. & Li, S.-L. (2008). Acta Cryst. C64, m267–m270.

Zhang, L.-P., Ma, J.-F., Pang, Y.-Y., Ma, J.-C. & Yang, J. (2010). CrystEngComm, 12, 4433–4442.