supplementary materials


hy2602 scheme

Acta Cryst. (2012). E68, m1492    [ doi:10.1107/S1600536812046545 ]

catena-Poly[di-[mu]3-bromido-hexa-[mu]2-bromido-dibromidobis(O-methyl pyridine-2-carboximidate-[kappa]2N,N')pentamercury(II)]

S. A. Shirvan and M. Hossaini Sadr

Abstract top

The title compound, [Hg5Br10(C7H8N2O)2]n, contains two [mu]3-bridging Br atoms, six [mu]2-bridging Br atoms and two terminal Br atoms. One HgII atom, lying on an inversion center, adopts a distorted octahedral geometry defined by six Br atoms. Two HgII atoms adopt a distorted square-pyramidal geometry by five Br atoms and the other two HgII atoms have a distorted tetrahedral geometry by two N atoms from a chelating O-methyl pyridine-2-carboximidate ligand and two Br atoms. The Br atoms link the HgII atoms into a ribbon structure along [100].

Comment top

As has previously been observed, the reaction of 2-cyanopyridine (2-cnpy) with water or an alcohol in the presence of some metal(II) salts leads to the formation of complexes which contain O-alkylpyridine-2-carboximidate (Barnard, 1969; Seglá & Jamnicky, 1988; Suzuki et al., 1974). The reaction of 2-cnpy and CuII (Du et al., 2005), CdII (Du et al., 2006) and NiII (Jamnicky et al., 1995) in methanol leads to the formation of a chelate ligand, O-methylpyridine-2-carboximidate. Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) consists of 2.5 crystallographically independent HgII atoms, five bromide ions and one neutral O-methylpyridine-2-carboximidate ligand. The Br2 atom adopts a µ3-mode to bridge three HgII atoms, while Br1, Br3 and Br5 are coordinated to HgII atoms in a µ2-mode. The Br4 atom is coordinated to one HgII atom in a terminal fashion. The Hg1 atom adopts a distorted tetrahedral coordination geometry defined by two N atoms from one O-methylpyridine-2-carboximidate ligand and two Br atoms. The Hg2 atom, lying on an inversion center, adopts a distorted octahedral geometry by six Br atoms and Hg3 atom adopts a distorted square-pyramidal geometry by five Br atoms (Table 1). The HgII atoms are linked by the Br atoms into a ribbon structure along [100].

Related literature top

For metal complexes with O-alkyl pyridine-2-carboximidate, see: Barnard (1969); Du et al. (2005, 2006); Jamnicky et al. (1995); Seglá & Jamnicky (1988); Suzuki et al. (1974).

Experimental top

For the preparation of the title compound, a solution of 2-cyanopyridine (0.47 g, 4.42 mmol) in methanol (10 ml) was added to a solution of HgBr2 (0.82 g, 2.21 mmol) in methanol (10 ml) and the resulting yellow solution was stirred for 20 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of the title compound were isolated (yield: 0.75 g, 83.4%).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH3) and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). The highest residual electron density was found 1.09 Å from Hg3 the deepest hole 1.05 Å from Hg3.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) -1+x, y, z; (b) 1+x, y, z; (c) 1-x, 1-y, -z.]
[Figure 2] Fig. 2. Crystal packing diagram for the title compound.
catena-Poly[di-µ3-bromido-hexa-µ2-bromido- dibromidobis(O-methyl pyridine-2-carboximidate-κ2N,N')pentamercury(II)] top
Crystal data top
[Hg5Br10(C7H8N2O)2]Z = 1
Mr = 2074.26F(000) = 894
Triclinic, P1Dx = 3.978 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6768 (7) ÅCell parameters from 7320 reflections
b = 10.7223 (10) Åθ = 1.9–26.0°
c = 11.0663 (10) ŵ = 33.65 mm1
α = 92.067 (7)°T = 298 K
β = 102.850 (7)°Prism, yellow
γ = 101.879 (7)°0.30 × 0.19 × 0.18 mm
V = 865.86 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3410 independent reflections
Radiation source: fine-focus sealed tube2042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.105, Tmax = 0.223k = 1313
7320 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0731P)2]
where P = (Fo2 + 2Fc2)/3
3410 reflections(Δ/σ)max = 0.003
160 parametersΔρmax = 1.89 e Å3
0 restraintsΔρmin = 1.90 e Å3
Crystal data top
[Hg5Br10(C7H8N2O)2]γ = 101.879 (7)°
Mr = 2074.26V = 865.86 (14) Å3
Triclinic, P1Z = 1
a = 7.6768 (7) ÅMo Kα radiation
b = 10.7223 (10) ŵ = 33.65 mm1
c = 11.0663 (10) ÅT = 298 K
α = 92.067 (7)°0.30 × 0.19 × 0.18 mm
β = 102.850 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2042 reflections with I > 2σ(I)
Tmin = 0.105, Tmax = 0.223Rint = 0.084
7320 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.148Δρmax = 1.89 e Å3
S = 0.93Δρmin = 1.90 e Å3
3410 reflectionsAbsolute structure: ?
160 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.003 (4)0.838 (2)0.726 (2)0.076 (7)
H1A0.08860.76620.70950.091*
H1B0.07340.80910.77430.091*
H1C0.06800.89550.77230.091*
C20.211 (2)0.8446 (18)0.5315 (18)0.046 (4)
C30.327 (3)0.9261 (17)0.4289 (17)0.046 (4)
C40.329 (3)1.0579 (19)0.4102 (19)0.056 (5)
H40.25671.09620.47020.067*
C50.434 (3)1.128 (2)0.3060 (19)0.057 (5)
H50.43161.21420.29300.069*
C60.540 (3)1.075 (2)0.223 (2)0.063 (6)
H60.61401.12300.15170.076*
C70.539 (3)0.948 (2)0.244 (2)0.065 (6)
H70.61860.91310.18550.078*
N10.211 (2)0.7237 (14)0.5445 (16)0.054 (4)
H1D0.14060.67420.60670.065*
N20.435 (3)0.8714 (16)0.3409 (15)0.059 (5)
O10.110 (2)0.9040 (13)0.6109 (12)0.062 (4)
Hg10.41370 (13)0.64830 (8)0.39109 (9)0.0623 (3)
Hg20.50000.50000.00000.0588 (3)
Hg30.95464 (12)0.64042 (7)0.14661 (8)0.0591 (3)
Br10.7283 (3)0.6379 (2)0.4186 (2)0.0619 (6)
Br20.2253 (3)0.5162 (2)0.26046 (19)0.0549 (5)
Br30.6541 (3)0.72282 (19)0.0001 (2)0.0607 (5)
Br41.1178 (4)0.8617 (2)0.1174 (3)0.0788 (7)
Br50.7893 (3)0.41969 (18)0.1371 (2)0.0544 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (15)0.080 (16)0.076 (17)0.026 (13)0.004 (13)0.002 (13)
C20.027 (9)0.057 (11)0.051 (12)0.002 (8)0.008 (8)0.012 (9)
C30.049 (10)0.043 (9)0.038 (10)0.010 (8)0.011 (9)0.005 (8)
C40.057 (12)0.055 (12)0.051 (13)0.007 (10)0.007 (10)0.001 (10)
C50.061 (13)0.053 (11)0.052 (12)0.001 (10)0.016 (11)0.018 (9)
C60.058 (13)0.058 (13)0.072 (15)0.002 (11)0.028 (12)0.011 (11)
C70.053 (13)0.065 (14)0.058 (14)0.023 (11)0.006 (11)0.007 (11)
N10.059 (10)0.035 (8)0.068 (11)0.019 (8)0.008 (9)0.007 (7)
N20.078 (12)0.051 (9)0.038 (9)0.015 (9)0.008 (9)0.003 (7)
O10.078 (10)0.055 (8)0.047 (8)0.030 (8)0.010 (7)0.003 (6)
Hg10.0624 (5)0.0600 (5)0.0714 (6)0.0192 (4)0.0229 (4)0.0187 (4)
Hg20.0572 (7)0.0560 (6)0.0657 (8)0.0076 (5)0.0246 (6)0.0032 (5)
Hg30.0575 (5)0.0477 (4)0.0686 (6)0.0021 (4)0.0159 (4)0.0045 (4)
Br10.0548 (12)0.0756 (14)0.0564 (13)0.0195 (11)0.0106 (10)0.0052 (10)
Br20.0528 (11)0.0612 (12)0.0505 (12)0.0070 (9)0.0162 (9)0.0068 (9)
Br30.0698 (14)0.0512 (11)0.0631 (13)0.0113 (10)0.0208 (11)0.0071 (9)
Br40.0762 (16)0.0521 (12)0.0983 (19)0.0031 (11)0.0148 (14)0.0127 (12)
Br50.0573 (12)0.0446 (10)0.0632 (13)0.0040 (9)0.0263 (10)0.0037 (9)
Geometric parameters (Å, º) top
C1—O11.44 (3)C7—N21.32 (3)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600Hg1—N12.322 (14)
C1—H1C0.9600N1—H1D0.8600
C2—N11.30 (2)Hg1—N22.400 (16)
C2—O11.313 (19)Hg1—Br12.524 (2)
C2—C31.42 (3)Hg1—Br22.534 (2)
C3—N21.36 (2)Hg2—Br23.204 (2)
C3—C41.42 (3)Hg2—Br32.438 (2)
C4—C51.35 (3)Hg2—Br53.189 (2)
C4—H40.9300Hg3—Br13.119 (2)
C5—C61.31 (3)Hg3—Br2i3.140 (2)
C5—H50.9300Hg3—Br33.337 (2)
C6—C71.38 (3)Hg3—Br42.418 (2)
C6—H60.9300Hg3—Br52.463 (2)
O1—C1—H1A109.5N2—C7—C6125 (2)
O1—C1—H1B109.5N2—C7—H7117.5
H1A—C1—H1B109.5C6—C7—H7117.5
O1—C1—H1C109.5C2—N1—Hg1116.5 (13)
H1A—C1—H1C109.5C2—N1—H1D121.7
H1B—C1—H1C109.5Hg1—N1—H1D121.7
N1—C2—O1124.8 (18)C7—N2—C3116.5 (17)
N1—C2—C3121.8 (16)C7—N2—Hg1129.5 (14)
O1—C2—C3113.4 (17)C3—N2—Hg1113.9 (12)
N2—C3—C2117.1 (16)C2—O1—C1120.6 (16)
N2—C3—C4119.2 (17)N1—Hg1—N270.5 (5)
C2—C3—C4123.6 (17)N1—Hg1—Br1120.2 (4)
C5—C4—C3120.6 (18)N2—Hg1—Br1104.2 (5)
C5—C4—H4119.7N1—Hg1—Br2107.2 (4)
C3—C4—H4119.7N2—Hg1—Br2109.5 (5)
C6—C5—C4120 (2)Br1—Hg1—Br2128.56 (7)
C6—C5—H5120.2Br3ii—Hg2—Br3180.0
C4—C5—H5120.2Br4—Hg3—Br5169.89 (9)
C5—C6—C7119 (2)Br4—Hg3—Br198.67 (8)
C5—C6—H6120.5Br5—Hg3—Br189.75 (7)
C7—C6—H6120.5Hg1—Br1—Hg3103.35 (8)
N1—C2—C3—N23 (3)N1—C2—O1—C14 (3)
O1—C2—C3—N2179.0 (17)C3—C2—O1—C1173.9 (19)
N1—C2—C3—C4179.0 (19)C2—N1—Hg1—N21.7 (14)
O1—C2—C3—C43 (3)C2—N1—Hg1—Br193.8 (14)
N2—C3—C4—C51 (3)C2—N1—Hg1—Br2106.8 (14)
C2—C3—C4—C5176 (2)C7—N2—Hg1—N1180 (2)
C3—C4—C5—C62 (3)C3—N2—Hg1—N13.0 (13)
C4—C5—C6—C71 (3)C7—N2—Hg1—Br163 (2)
C5—C6—C7—N22 (4)C3—N2—Hg1—Br1114.5 (14)
O1—C2—N1—Hg1177.9 (14)C7—N2—Hg1—Br278 (2)
C3—C2—N1—Hg10 (2)C3—N2—Hg1—Br2104.9 (14)
C6—C7—N2—C33 (3)N1—Hg1—Br1—Hg3157.3 (5)
C6—C7—N2—Hg1179.3 (17)N2—Hg1—Br1—Hg381.8 (4)
C2—C3—N2—C7178.4 (19)Br2—Hg1—Br1—Hg348.13 (13)
C4—C3—N2—C72 (3)Br4—Hg3—Br1—Hg1102.16 (10)
C2—C3—N2—Hg14 (2)Br5—Hg3—Br1—Hg172.22 (8)
C4—C3—N2—Hg1179.6 (15)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
Selected bond lengths (Å) top
Hg1—N12.322 (14)Hg2—Br53.189 (2)
Hg1—N22.400 (16)Hg3—Br13.119 (2)
Hg1—Br12.524 (2)Hg3—Br2i3.140 (2)
Hg1—Br22.534 (2)Hg3—Br33.337 (2)
Hg2—Br23.204 (2)Hg3—Br42.418 (2)
Hg2—Br32.438 (2)Hg3—Br52.463 (2)
Symmetry code: (i) x+1, y, z.
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

references
References top

Barnard, P. F. B. (1969). J. Chem. Soc. A, pp. 2140–2144.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Du, M., Wang, Q., Wang, Y., Zhao, X. J. & Ribas, J. (2006). J. Solid State Chem. 179, 3926–3936.

Du, M., Zhao, X. J., Batten, S. R. & Ribas, J. (2005). Cryst. Growth Des. 5, 901–909.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Jamnicky, M., Seglá, P. & Koman, M. (1995). Polyhedron, 14, 1837–1847.

Seglá, P. & Jamnicky, M. (1988). Inorg. Chim. Acta, 146, 93–97.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Suzuki, S., Nakahara, M. & Watanabe, K. (1974). Bull. Chem. Soc. Jpn, 47, 645–647.