supplementary materials


pv2602 scheme

Acta Cryst. (2012). E68, o3345    [ doi:10.1107/S1600536812046144 ]

4'-Methyl-14',19'-dioxa-4'-azaspiro[acenaphthylene-1,5'-tetracyclo[18.4.0.02,6.08,13]tetracosane]-1'(24'),8',10',12',20',22'-hexaene-2,7'(1H)-dione

S. Narayanan, T. Srinivasan, S. Purushothaman, R. Raghunathan and D. Velmurugan

Abstract top

In the title compound, C33H29NO4, the acenaphthylene ring system is essentially planar (r.m.s. deviation = 0.0290 Å). The pyrrolidine ring adopts a C-envelope conformation with a C atom displaced by 0.671 (2) Å from the mean-plane formed by the remaining ring atoms. The pyrrolidine ring is fused to acenaphthylene ring system making a dihedral angle of 88.0 (7)°. In the crystal, molecules are linked into R22(9) dimers via C-H...N and C-H...O hydrogen bonds. Two C atoms act as donors to the same O atom acceptor, resulting in the formation of R21(7) ring motifs. These two motifs combine to form hydrogen-bonded sheets running along the a- and b-axis directions.

Comment top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). In continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives (Narayanan et al., 2012), the crystal structure of the title compound has been carried out and the results are presented here.

The bond lengths and angles in the title molecule (Fig. 1) are within normal ranges and comparable to those found in closely related structures (Narayanan et al., 2012; Augustine et al., 2010). The acenaphthylene ring system (C4–C15) is essentially planar (rmsd 0.0290 Å). The pyrrolidine ring (C1–C4/N1) adopts a C4-envelop conformation with C4 0.671 (2) Å displaced from the mean-plane formed by the remaining ring atoms. The pyrrolidine ring is fused to acenaphthylene ring system; the dihedral angle between these two ring systems being 88.0 (7)°.

The molecules are linked into dimers via C9—H9···N1 and C15—H15···O1 hydrogen bonds with the graph-set motif R22(9) (Bernstein et al., 1995). Similarly, atoms C27 and C29 act as donors to form bifurcated hydrogen bonds with atom O2 as an acceptor, resulting in the formation of R21(7) ring motif. These two motifs combine to form a hydrogen-bonded molecular ribbons running along the a and b-axes.

Related literature top

For background to natural and synthetic pharmacologically active pyrrolidines, see: Waldmann (1995). For related structures, see: Augustine et al. (2010); Narayanan et al. (2012). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of acenaphthylene-1,2-dione (182 mg, 1 mmol), sarcosine (90 mg, 1 mmol) and (4E)-12,17-dioxatricyclo[16.4.0.06,11]docosa -1(22),4,6,8,10,18,20-heptaen-3-one (300 mg 1.0 mmol) in toluene (20 ml) was refluxed under Dean-Stark reaction condition until the disappearance of starting materials as evidenced by TLC. The reaction mixture was concentrated in vacuo and extracted with water (50 ml) and dichloromethane (2x50 ml). The organic layer was washed with brine solution, dried with anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography with hexane-ethylacetate (9:1) mixture to yield macrocycle in good yields. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure showing C—H···N and C—H···O hydrogen bonds (dashed lines); H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes: i - x, - 1/2 + y, 1/2 - z; ii 1 - x, 1/2 + y, 1/2 - z.
[Figure 3] Fig. 3. Molecular packing of the title compound, showing hydrogen bonds resulting in molecular ribbons running along the a and the b axes. H atoms not involved in hydrogen bonds have been omitted for clarity.
4'-Methyl-14',19'-dioxa-4'-azaspiro[acenaphthylene-1,5'- tetracyclo[18.4.0.02,6.08,13]tetracosane]-1'(24'),8',10',12',20',22'- hexaene-2,7'(1H)-dione top
Crystal data top
C33H29NO4F(000) = 1064
Mr = 503.57Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6363 reflections
a = 11.248 (2) Åθ = 1.8–28.3°
b = 16.609 (3) ŵ = 0.08 mm1
c = 14.037 (3) ÅT = 293 K
β = 92.965 (6)°Block, colorless
V = 2618.8 (9) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6363 independent reflections
Radiation source: fine-focus sealed tube4183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.979, Tmax = 0.984k = 2119
24740 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.572P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6363 reflectionsΔρmax = 0.22 e Å3
345 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0125 (10)
Crystal data top
C33H29NO4V = 2618.8 (9) Å3
Mr = 503.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.248 (2) ŵ = 0.08 mm1
b = 16.609 (3) ÅT = 293 K
c = 14.037 (3) Å0.25 × 0.22 × 0.19 mm
β = 92.965 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4183 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.035
24740 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.22 e Å3
S = 1.01Δρmin = 0.21 e Å3
6363 reflectionsAbsolute structure: ?
345 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23872 (16)0.09798 (10)0.09848 (11)0.0548 (4)
H1A0.25550.15420.08610.066*
H1B0.22400.07060.03800.066*
C20.34391 (14)0.05856 (9)0.15621 (10)0.0447 (4)
H20.35670.00560.12760.054*
C30.29234 (12)0.04354 (8)0.25405 (9)0.0358 (3)
H30.29700.09360.29110.043*
C40.16007 (13)0.02549 (8)0.22597 (10)0.0407 (3)
C50.08158 (14)0.03292 (9)0.31428 (12)0.0487 (4)
C60.02699 (14)0.04693 (10)0.32978 (14)0.0580 (5)
C70.04217 (18)0.07611 (14)0.39953 (19)0.0829 (7)
H70.06390.04390.44990.100*
C80.0792 (2)0.15770 (18)0.3916 (3)0.1069 (10)
H80.12440.17920.43910.128*
C90.0513 (2)0.20604 (16)0.3171 (3)0.1046 (10)
H90.08000.25850.31420.126*
C100.02022 (18)0.17780 (11)0.24486 (19)0.0766 (6)
C110.05975 (15)0.09741 (10)0.25487 (14)0.0569 (5)
C120.13465 (14)0.06061 (9)0.19125 (12)0.0488 (4)
C130.16914 (19)0.10407 (10)0.11489 (14)0.0652 (5)
H130.21890.08120.07140.078*
C140.1285 (2)0.18403 (12)0.10263 (18)0.0841 (7)
H140.15150.21280.04980.101*
C150.0580 (2)0.22028 (12)0.1642 (2)0.0908 (8)
H150.03400.27330.15380.109*
C160.02011 (19)0.08788 (12)0.10598 (16)0.0748 (6)
H16A0.01510.04050.06670.112*
H16B0.01050.13490.06650.112*
H16C0.04150.08650.15080.112*
C170.35059 (13)0.02308 (8)0.31245 (10)0.0392 (3)
C180.33202 (13)0.02667 (8)0.41733 (10)0.0402 (3)
C190.29524 (16)0.09961 (10)0.45511 (13)0.0562 (4)
H190.28010.14310.41460.067*
C200.28089 (18)0.10834 (12)0.55164 (15)0.0695 (5)
H200.25420.15690.57570.083*
C210.30611 (18)0.04520 (13)0.61134 (13)0.0671 (5)
H210.29850.05150.67660.081*
C220.34253 (16)0.02753 (11)0.57657 (12)0.0561 (4)
H220.35980.06990.61830.067*
C230.35360 (13)0.03799 (9)0.47915 (10)0.0413 (3)
C240.41564 (17)0.17608 (10)0.50022 (12)0.0553 (4)
H24A0.48000.16370.54650.066*
H24B0.34590.19090.53410.066*
C250.45091 (18)0.24358 (11)0.43577 (13)0.0621 (5)
H25A0.51060.22390.39410.075*
H25B0.48680.28630.47450.075*
C260.34744 (18)0.27817 (11)0.37493 (13)0.0642 (5)
H26A0.28020.24190.37760.077*
H26B0.32440.32910.40230.077*
C270.37315 (18)0.29175 (9)0.27161 (13)0.0589 (5)
H27A0.31240.32620.24170.071*
H27B0.44950.31840.26760.071*
C280.47683 (15)0.18063 (9)0.19420 (11)0.0476 (4)
C290.58811 (16)0.21697 (11)0.19675 (13)0.0592 (5)
H290.59770.26880.22100.071*
C300.68444 (17)0.17641 (13)0.16345 (14)0.0694 (5)
H300.75870.20110.16550.083*
C310.67185 (18)0.10011 (14)0.12739 (14)0.0694 (5)
H310.73700.07310.10460.083*
C320.56117 (17)0.06348 (12)0.12523 (12)0.0591 (5)
H320.55310.01160.10090.071*
C330.46186 (15)0.10206 (10)0.15840 (10)0.0468 (4)
N10.13583 (12)0.09043 (7)0.15743 (9)0.0472 (3)
O10.07071 (12)0.09415 (7)0.35944 (9)0.0664 (4)
O20.40539 (11)0.07668 (7)0.27515 (8)0.0599 (3)
O30.39011 (10)0.10797 (6)0.43954 (7)0.0497 (3)
O40.37498 (10)0.21578 (7)0.22268 (8)0.0569 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0767 (12)0.0497 (9)0.0371 (8)0.0005 (8)0.0065 (8)0.0038 (7)
C20.0589 (10)0.0389 (8)0.0367 (7)0.0005 (7)0.0053 (7)0.0021 (6)
C30.0430 (8)0.0286 (7)0.0356 (7)0.0007 (5)0.0004 (6)0.0025 (5)
C40.0445 (8)0.0300 (7)0.0467 (8)0.0009 (6)0.0044 (6)0.0016 (6)
C50.0404 (8)0.0408 (8)0.0647 (10)0.0051 (6)0.0028 (7)0.0039 (8)
C60.0360 (8)0.0512 (10)0.0865 (13)0.0024 (7)0.0001 (8)0.0147 (9)
C70.0502 (11)0.0831 (15)0.1170 (18)0.0046 (10)0.0184 (11)0.0275 (13)
C80.0591 (14)0.0902 (19)0.172 (3)0.0192 (13)0.0140 (16)0.057 (2)
C90.0675 (15)0.0611 (15)0.183 (3)0.0210 (12)0.0202 (17)0.0360 (17)
C100.0598 (12)0.0417 (10)0.1246 (19)0.0126 (9)0.0300 (12)0.0176 (12)
C110.0439 (9)0.0383 (9)0.0863 (13)0.0032 (7)0.0180 (9)0.0071 (8)
C120.0512 (9)0.0337 (8)0.0596 (10)0.0002 (7)0.0158 (7)0.0022 (7)
C130.0867 (14)0.0409 (9)0.0656 (11)0.0041 (9)0.0182 (10)0.0117 (8)
C140.1166 (19)0.0401 (11)0.0908 (15)0.0066 (11)0.0411 (14)0.0164 (11)
C150.1038 (18)0.0339 (10)0.128 (2)0.0062 (11)0.0552 (16)0.0039 (13)
C160.0739 (13)0.0638 (12)0.0828 (14)0.0077 (10)0.0346 (11)0.0002 (10)
C170.0404 (8)0.0318 (7)0.0451 (8)0.0005 (6)0.0007 (6)0.0023 (6)
C180.0384 (8)0.0376 (8)0.0442 (8)0.0039 (6)0.0023 (6)0.0070 (6)
C190.0613 (11)0.0435 (9)0.0634 (11)0.0025 (8)0.0003 (8)0.0111 (8)
C200.0752 (13)0.0629 (12)0.0709 (13)0.0046 (10)0.0097 (10)0.0294 (10)
C210.0765 (13)0.0773 (13)0.0482 (10)0.0074 (10)0.0096 (9)0.0210 (10)
C220.0633 (11)0.0628 (11)0.0420 (9)0.0085 (8)0.0010 (8)0.0034 (8)
C230.0405 (8)0.0422 (8)0.0410 (8)0.0047 (6)0.0005 (6)0.0050 (6)
C240.0724 (11)0.0472 (9)0.0457 (9)0.0012 (8)0.0037 (8)0.0094 (7)
C250.0727 (12)0.0509 (10)0.0621 (11)0.0082 (9)0.0020 (9)0.0078 (8)
C260.0783 (13)0.0507 (10)0.0644 (11)0.0104 (9)0.0099 (10)0.0038 (8)
C270.0776 (12)0.0345 (8)0.0648 (11)0.0015 (8)0.0075 (9)0.0031 (8)
C280.0563 (10)0.0461 (9)0.0410 (8)0.0045 (7)0.0083 (7)0.0086 (7)
C290.0634 (11)0.0561 (10)0.0585 (10)0.0112 (9)0.0089 (8)0.0099 (8)
C300.0549 (11)0.0847 (15)0.0694 (12)0.0108 (10)0.0103 (9)0.0195 (11)
C310.0581 (12)0.0888 (15)0.0631 (11)0.0089 (10)0.0203 (9)0.0109 (11)
C320.0668 (12)0.0640 (11)0.0477 (9)0.0056 (9)0.0145 (8)0.0003 (8)
C330.0557 (9)0.0500 (9)0.0356 (7)0.0009 (7)0.0103 (7)0.0051 (6)
N10.0544 (8)0.0381 (7)0.0474 (7)0.0035 (6)0.0124 (6)0.0029 (5)
O10.0762 (9)0.0486 (7)0.0767 (8)0.0104 (6)0.0253 (7)0.0038 (6)
O20.0757 (8)0.0466 (7)0.0571 (7)0.0223 (6)0.0017 (6)0.0050 (5)
O30.0681 (7)0.0412 (6)0.0393 (5)0.0081 (5)0.0009 (5)0.0042 (4)
O40.0603 (7)0.0441 (6)0.0676 (7)0.0071 (5)0.0152 (6)0.0077 (5)
Geometric parameters (Å, º) top
C1—N11.462 (2)C17—C181.499 (2)
C1—C21.545 (2)C18—C191.394 (2)
C1—H1A0.9700C18—C231.394 (2)
C1—H1B0.9700C19—C201.381 (3)
C2—C331.510 (2)C19—H190.9300
C2—C31.5386 (19)C20—C211.363 (3)
C2—H20.9800C20—H200.9300
C3—C171.5067 (19)C21—C221.373 (3)
C3—C41.548 (2)C21—H210.9300
C3—H30.9800C22—C231.390 (2)
C4—N11.4616 (18)C22—H220.9300
C4—C121.533 (2)C23—O31.3609 (17)
C4—C51.564 (2)C24—O31.4360 (18)
C5—O11.2079 (19)C24—C251.507 (2)
C5—C61.482 (2)C24—H24A0.9700
C6—C71.370 (3)C24—H24B0.9700
C6—C111.409 (3)C25—C261.520 (3)
C7—C81.420 (4)C25—H25A0.9700
C7—H70.9300C25—H25B0.9700
C8—C91.368 (4)C26—C271.510 (3)
C8—H80.9300C26—H26A0.9700
C9—C101.407 (4)C26—H26B0.9700
C9—H90.9300C27—O41.4372 (19)
C10—C111.412 (2)C27—H27A0.9700
C10—C151.418 (4)C27—H27B0.9700
C11—C121.399 (2)C28—O41.3640 (19)
C12—C131.365 (2)C28—C291.388 (2)
C13—C141.412 (3)C28—C331.405 (2)
C13—H130.9300C29—C301.378 (3)
C14—C151.345 (4)C29—H290.9300
C14—H140.9300C30—C311.369 (3)
C15—H150.9300C30—H300.9300
C16—N11.456 (2)C31—C321.385 (3)
C16—H16A0.9600C31—H310.9300
C16—H16B0.9600C32—C331.389 (2)
C16—H16C0.9600C32—H320.9300
C17—O21.2165 (17)
N1—C1—C2105.89 (12)C19—C18—C23118.57 (14)
N1—C1—H1A110.6C19—C18—C17117.88 (14)
C2—C1—H1A110.6C23—C18—C17123.51 (13)
N1—C1—H1B110.6C20—C19—C18121.12 (17)
C2—C1—H1B110.6C20—C19—H19119.4
H1A—C1—H1B108.7C18—C19—H19119.4
C33—C2—C3115.53 (12)C21—C20—C19119.44 (17)
C33—C2—C1117.14 (13)C21—C20—H20120.3
C3—C2—C1102.89 (12)C19—C20—H20120.3
C33—C2—H2106.9C20—C21—C22120.97 (17)
C3—C2—H2106.9C20—C21—H21119.5
C1—C2—H2106.9C22—C21—H21119.5
C17—C3—C2115.55 (12)C21—C22—C23120.21 (17)
C17—C3—C4112.42 (11)C21—C22—H22119.9
C2—C3—C4101.87 (11)C23—C22—H22119.9
C17—C3—H3108.9O3—C23—C22123.56 (14)
C2—C3—H3108.9O3—C23—C18116.75 (12)
C4—C3—H3108.9C22—C23—C18119.62 (14)
N1—C4—C12116.98 (12)O3—C24—C25106.31 (13)
N1—C4—C399.72 (11)O3—C24—H24A110.5
C12—C4—C3114.99 (12)C25—C24—H24A110.5
N1—C4—C5111.72 (12)O3—C24—H24B110.5
C12—C4—C5102.82 (12)C25—C24—H24B110.5
C3—C4—C5110.94 (12)H24A—C24—H24B108.7
O1—C5—C6128.49 (16)C24—C25—C26113.63 (16)
O1—C5—C4124.00 (14)C24—C25—H25A108.8
C6—C5—C4107.52 (13)C26—C25—H25A108.8
C7—C6—C11120.19 (18)C24—C25—H25B108.8
C7—C6—C5132.5 (2)C26—C25—H25B108.8
C11—C6—C5107.26 (15)H25A—C25—H25B107.7
C6—C7—C8117.2 (3)C27—C26—C25114.63 (16)
C6—C7—H7121.4C27—C26—H26A108.6
C8—C7—H7121.4C25—C26—H26A108.6
C9—C8—C7122.8 (2)C27—C26—H26B108.6
C9—C8—H8118.6C25—C26—H26B108.6
C7—C8—H8118.6H26A—C26—H26B107.6
C8—C9—C10121.2 (2)O4—C27—C26109.63 (13)
C8—C9—H9119.4O4—C27—H27A109.7
C10—C9—H9119.4C26—C27—H27A109.7
C9—C10—C11115.6 (2)O4—C27—H27B109.7
C9—C10—C15128.0 (2)C26—C27—H27B109.7
C11—C10—C15116.4 (2)H27A—C27—H27B108.2
C12—C11—C6113.94 (14)O4—C28—C29125.17 (15)
C12—C11—C10123.1 (2)O4—C28—C33114.55 (14)
C6—C11—C10122.95 (19)C29—C28—C33120.27 (16)
C13—C12—C11118.37 (16)C30—C29—C28120.15 (18)
C13—C12—C4133.39 (16)C30—C29—H29119.9
C11—C12—C4108.24 (14)C28—C29—H29119.9
C12—C13—C14119.3 (2)C31—C30—C29120.66 (18)
C12—C13—H13120.3C31—C30—H30119.7
C14—C13—H13120.3C29—C30—H30119.7
C15—C14—C13122.7 (2)C30—C31—C32119.37 (18)
C15—C14—H14118.6C30—C31—H31120.3
C13—C14—H14118.6C32—C31—H31120.3
C14—C15—C10120.09 (19)C31—C32—C33121.86 (18)
C14—C15—H15120.0C31—C32—H32119.1
C10—C15—H15120.0C33—C32—H32119.1
N1—C16—H16A109.5C32—C33—C28117.69 (16)
N1—C16—H16B109.5C32—C33—C2119.58 (15)
H16A—C16—H16B109.5C28—C33—C2122.73 (14)
N1—C16—H16C109.5C16—N1—C4115.89 (14)
H16A—C16—H16C109.5C16—N1—C1115.79 (15)
H16B—C16—H16C109.5C4—N1—C1108.04 (12)
O2—C17—C18119.55 (13)C23—O3—C24119.06 (12)
O2—C17—C3121.26 (13)C28—O4—C27123.29 (13)
C18—C17—C3119.01 (12)
N1—C1—C2—C33136.90 (13)C2—C3—C17—O222.5 (2)
N1—C1—C2—C39.01 (15)C4—C3—C17—O293.80 (17)
C33—C2—C3—C1775.61 (16)C2—C3—C17—C18162.43 (12)
C1—C2—C3—C17155.49 (12)C4—C3—C17—C1881.22 (15)
C33—C2—C3—C4162.22 (12)O2—C17—C18—C1945.8 (2)
C1—C2—C3—C433.32 (14)C3—C17—C18—C19129.27 (15)
C17—C3—C4—N1169.82 (11)O2—C17—C18—C23131.81 (16)
C2—C3—C4—N145.52 (13)C3—C17—C18—C2353.1 (2)
C17—C3—C4—C1243.82 (17)C23—C18—C19—C200.4 (2)
C2—C3—C4—C1280.48 (14)C17—C18—C19—C20177.41 (16)
C17—C3—C4—C572.31 (14)C18—C19—C20—C211.7 (3)
C2—C3—C4—C5163.39 (11)C19—C20—C21—C221.7 (3)
N1—C4—C5—O149.2 (2)C20—C21—C22—C230.4 (3)
C12—C4—C5—O1175.47 (16)C21—C22—C23—O3179.41 (15)
C3—C4—C5—O161.1 (2)C21—C22—C23—C182.5 (2)
N1—C4—C5—C6130.97 (13)C19—C18—C23—O3179.58 (13)
C12—C4—C5—C64.71 (15)C17—C18—C23—O31.9 (2)
C3—C4—C5—C6118.73 (13)C19—C18—C23—C222.5 (2)
O1—C5—C6—C74.9 (3)C17—C18—C23—C22175.18 (14)
C4—C5—C6—C7175.0 (2)O3—C24—C25—C2671.99 (18)
O1—C5—C6—C11175.99 (17)C24—C25—C26—C27135.12 (16)
C4—C5—C6—C114.20 (17)C25—C26—C27—O474.2 (2)
C11—C6—C7—C80.7 (3)O4—C28—C29—C30178.10 (15)
C5—C6—C7—C8179.8 (2)C33—C28—C29—C300.5 (3)
C6—C7—C8—C91.7 (4)C28—C29—C30—C310.1 (3)
C7—C8—C9—C102.2 (4)C29—C30—C31—C320.5 (3)
C8—C9—C10—C110.1 (3)C30—C31—C32—C330.2 (3)
C8—C9—C10—C15179.2 (2)C31—C32—C33—C280.4 (2)
C7—C6—C11—C12177.33 (17)C31—C32—C33—C2178.72 (16)
C5—C6—C11—C121.9 (2)O4—C28—C33—C32178.01 (14)
C7—C6—C11—C102.8 (3)C29—C28—C33—C320.8 (2)
C5—C6—C11—C10177.89 (16)O4—C28—C33—C22.9 (2)
C9—C10—C11—C12177.83 (18)C29—C28—C33—C2178.32 (15)
C15—C10—C11—C121.6 (3)C3—C2—C33—C32117.19 (16)
C9—C10—C11—C62.3 (3)C1—C2—C33—C32121.30 (16)
C15—C10—C11—C6178.22 (17)C3—C2—C33—C2861.87 (19)
C6—C11—C12—C13178.50 (15)C1—C2—C33—C2859.65 (19)
C10—C11—C12—C131.3 (3)C12—C4—N1—C1648.6 (2)
C6—C11—C12—C41.21 (19)C3—C4—N1—C16173.22 (14)
C10—C11—C12—C4178.95 (15)C5—C4—N1—C1669.49 (17)
N1—C4—C12—C1353.2 (2)C12—C4—N1—C183.20 (16)
C3—C4—C12—C1363.3 (2)C3—C4—N1—C141.42 (14)
C5—C4—C12—C13176.04 (18)C5—C4—N1—C1158.71 (12)
N1—C4—C12—C11126.41 (15)C2—C1—N1—C16152.69 (14)
C3—C4—C12—C11117.08 (14)C2—C1—N1—C420.84 (16)
C5—C4—C12—C113.61 (15)C22—C23—O3—C241.9 (2)
C11—C12—C13—C140.0 (3)C18—C23—O3—C24178.90 (14)
C4—C12—C13—C14179.62 (17)C25—C24—O3—C23178.90 (14)
C12—C13—C14—C151.0 (3)C29—C28—O4—C278.9 (2)
C13—C14—C15—C100.7 (3)C33—C28—O4—C27172.38 (13)
C9—C10—C15—C14178.8 (2)C26—C27—O4—C28107.64 (17)
C11—C10—C15—C140.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.932.623.535 (3)167
C15—H15···O1i0.932.503.414 (2)168
C27—H27B···O2ii0.972.483.403 (2)158
C29—H29···O2ii0.932.573.450 (2)159
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.932.623.535 (3)167.4
C15—H15···O1i0.932.503.414 (2)167.8
C27—H27B···O2ii0.972.483.403 (2)158.3
C29—H29···O2ii0.932.573.450 (2)158.7
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Acknowledgements top

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SN thanks the University Grant Commission (UGC), Government of India, New Delhi, for a Meritorious Fellowship under the SAP programme.

references
References top

Augustine, T., Vithiya, S. M., Ignacimuthu, S. & Ramkumar, V. (2010). Acta Cryst. E66, o3002.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, SUBMITTED PV2600

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Waldmann, H. (1995). Synlett, pp. 133–141.