supplementary materials


rn2109 scheme

Acta Cryst. (2012). E68, m1490-m1491    [ doi:10.1107/S1600536812046053 ]

rac-{[2-(Diphenylthiophosphanyl)ferrocenyl]methyl}trimethylammonium iodide chloroform monosolvate

A. Karpous, Z. Voitenko, J.-C. Daran and E. Manoury

Abstract top

The title compound, [Fe(C5H5)(C21H24NPS)]I·CHCl3, is built up from a (ferrocenylmethyl)trimethylammonium cation, a iodine anion and a chloroform solvent molecule, all residing in general positions. The N atom of the ammonium group is displaced by 1.182 (2) Å from the plane of the substituted cyclopentadienyl (Cp) ring towards the Fe atom, whereas the C atom attached to the same Cp ring is slightly below this plane by -0.128 (2) Å. These deviations might result from weak agostic interactions between the two H atoms of the CH2 group and the Fe atom.

Comment top

Recently, our group has synthesized various chiral enantiomerically pure ferrocenyl ligands and tested them in different catalytic asymmetric reactions (Routaboul et al., 2005; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Diab et al., 2008; Audin et al., 2010; Debono et al., 2010). These ligands are synthesized from enantiomerically pure 2-(diphenylthiophosphanyl)(hydroxymethyl)ferrocene. One intermediate in the synthesis of such enantiomerically pure building block is the racemic (2-diphenylthiophosphanylferrocenyl) trimethylammonium iodide (Mateus et al., 2006).

The asymmetric unit is built up from the (ferrocenylmethyl)trimethylammonium cation, the iodine anion and a chloroform molecule as solvate (Fig. 1). Except for the occurrence of the chloroform solvate, the structure is closely related to the one reported by Ferguson et al. (1994). However, in their case, the iodine was in weak interaction with one of the H atom of the bridging CH2 group whereas in our case the shortest interactions with the iodine involved one of the methyl of the ammonium and the H atom of the chloroform (Table 1). The phosphorus, P1 atom, is roughly in the plane of the Cp ring to which it is attached deviating only by -0.013 (1) Å whereas the sulfur, S1, is endo located -0.887 (1) Å below the Cp ring.

In the Cambridge Structural Database (CSD version 5.33, 2011; Allen, 2002), there are, to the best of our knowledge, 34 hits corresponding to structures involving the (ferrocenylmethyl)trimethylammonium cation with different counter ions. A comparison of selected distances and angles within the Cp—C-NMe3 framework is reported in supplementary materials. Surprisingly, there is no real influence of the counter ion on the geometry of this framework. In all compounds the bridging C sp3 atom is always endo with respect to the Cp ring to which it is attached with values ranging from -0.07 to -0.426 Å, whereas the ammonium N atom is always exo with values ranging from 0.999 to 1.914 Å. Surprisingly, these two extreme values are related to compound containing a very large anion, the (µ12-phosphato)-tetracosakis(µ2-oxo)-dodecaoxo-molybdenum(v)-undeca-molybdenum(vi) (Li et al., 2009). However, it is worthwhile to note that the asymmetric unit in this polyoxomolybdate anions contains four molecules of which two of them have distance of the N from the Cp ring within the usual range: 1.248 and 1.152 Å. Moreover there are other compounds containing polyoxomolybdate anions (Xu et al., 2010; Li et al. 2009) for which the values are within the normal range. So, these two extreme values might be the consequence of crystal packing which should accommodate four molecules within the asymetric unit.

Related literature top

For related structures containing the (ferrocenyl)trimethylammonium framework, see: Bai et al. (2011); Ballester et al. (2003); Blake et al. (2004); Broomsgrove et al. (2010); Chohan et al. (1997); Deck et al. (2000); Ferguson et al. (1994); Herbstein & Kapon (2008); Hong et al. (2005); Hosmane et al. (1998); Hu et al. (2004); Li et al. (2009); Malezieux et al. (1994); Pullen et al. (1998); Reynes et al. (2002); Selvapalam et al. (2007); Sharma et al. (2006); Veya & Kochi (1995); Volkov et al. (2003, 2005, 2006); Xu et al. (2010); Yongmao et al. (1982); Zhuji et al. (1982). For their use in chemistry, see: Routaboul et al. (2005, 2007); Mateus et al. (2006); Le Roux et al. (2007); Diab et al. (2008); Audin et al. (2010); Debono et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

(2-diphenylthiophosphanylferrocenyl) trimethylammonium iodide was synthesized by a published procedure (Mateus et al., 2006). Single crystals suitable for X-ray diffraction analysis were grown from a chloroform solution by slow evaporation of the solvent.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) and 1.0 Å (methine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular view of compound I with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
rac-{[2-(Diphenylthiophosphanyl)ferrocenyl]methyl}trimethylammonium iodide chloroform monosolvate top
Crystal data top
[Fe(C5H5)(C21H24NPS)]I·CHCl3F(000) = 1440
Mr = 720.65Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19830 reflections
a = 17.4056 (6) Åθ = 2.9–28.4°
b = 12.1843 (3) ŵ = 1.96 mm1
c = 14.9389 (5) ÅT = 180 K
β = 110.632 (4)°Box, yellow
V = 2964.97 (18) Å30.49 × 0.18 × 0.10 mm
Z = 4
Data collection top
Agilent Xcalibur (Sapphire1, long nozzle)
diffractometer
6065 independent reflections
Radiation source: fine-focus sealed tube5385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1515
Tmin = 0.574, Tmax = 1.0l = 1818
31103 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0242P)2 + 2.8471P]
where P = (Fo2 + 2Fc2)/3
6065 reflections(Δ/σ)max = 0.002
319 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Fe(C5H5)(C21H24NPS)]I·CHCl3V = 2964.97 (18) Å3
Mr = 720.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.4056 (6) ŵ = 1.96 mm1
b = 12.1843 (3) ÅT = 180 K
c = 14.9389 (5) Å0.49 × 0.18 × 0.10 mm
β = 110.632 (4)°
Data collection top
Agilent Xcalibur (Sapphire1, long nozzle)
diffractometer
6065 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5385 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 1.0Rint = 0.034
31103 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.62 e Å3
S = 1.08Δρmin = 0.61 e Å3
6065 reflectionsAbsolute structure: ?
319 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2012)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.170301 (18)0.73893 (3)0.16941 (2)0.01825 (7)
P10.13712 (3)0.49498 (4)0.25844 (4)0.01734 (11)
S10.13878 (4)0.39785 (5)0.15519 (4)0.02843 (13)
N10.38708 (12)0.51750 (17)0.26266 (14)0.0266 (4)
C10.19359 (13)0.62039 (17)0.26970 (14)0.0173 (4)
C20.26568 (13)0.64348 (18)0.24522 (15)0.0196 (4)
C30.28607 (14)0.75593 (19)0.26702 (16)0.0242 (5)
H30.33070.79350.25810.029*
C40.22953 (15)0.80223 (19)0.30379 (16)0.0253 (5)
H40.22970.87620.32410.030*
C50.17231 (14)0.72073 (17)0.30565 (15)0.0211 (4)
H50.12740.73070.32700.025*
C60.06407 (17)0.7065 (2)0.05634 (18)0.0407 (7)
H60.02440.65190.05370.049*
C70.13415 (18)0.6930 (2)0.03003 (17)0.0367 (6)
H70.15000.62730.00700.044*
C80.17626 (15)0.7942 (2)0.04407 (16)0.0292 (5)
H80.22530.80890.03190.035*
C90.13258 (15)0.8694 (2)0.07938 (17)0.0309 (5)
H90.14710.94390.09540.037*
C100.06381 (16)0.8155 (3)0.08696 (18)0.0377 (6)
H100.02390.84730.10900.045*
C210.30886 (13)0.57269 (19)0.19659 (15)0.0231 (5)
H21A0.32300.61800.14960.028*
H21B0.27040.51490.16050.028*
C230.42053 (19)0.4499 (3)0.2013 (2)0.0448 (7)
H23A0.47070.41270.24170.067*
H23B0.43310.49750.15540.067*
H23C0.37970.39500.16670.067*
C240.36912 (17)0.4455 (2)0.3336 (2)0.0409 (7)
H24A0.32530.39390.29990.061*
H24B0.35160.49070.37720.061*
H24C0.41870.40450.37030.061*
C250.45051 (16)0.6000 (2)0.3157 (2)0.0396 (6)
H25A0.43020.64290.35810.059*
H25B0.46180.64910.26990.059*
H25C0.50110.56190.35370.059*
C1110.17654 (13)0.43111 (17)0.37555 (15)0.0186 (4)
C1120.23704 (14)0.47914 (18)0.45243 (15)0.0214 (4)
H1120.26160.54620.44420.026*
C1130.26174 (15)0.4291 (2)0.54143 (16)0.0269 (5)
H1130.30400.46110.59400.032*
C1140.22482 (15)0.3329 (2)0.55350 (16)0.0289 (5)
H1140.24110.29950.61480.035*
C1150.16466 (15)0.2848 (2)0.47744 (17)0.0285 (5)
H1150.13960.21850.48640.034*
C1160.14071 (14)0.33311 (19)0.38783 (16)0.0240 (5)
H1160.09990.29930.33500.029*
C1210.03365 (13)0.53257 (17)0.24974 (15)0.0204 (4)
C1220.01987 (14)0.57870 (19)0.32821 (16)0.0243 (5)
H1220.06460.59030.38630.029*
C1230.05875 (15)0.6075 (2)0.32155 (19)0.0313 (5)
H1230.06780.64030.37470.038*
C1240.12427 (16)0.5887 (2)0.2378 (2)0.0359 (6)
H1240.17820.60880.23330.043*
C1250.11120 (15)0.5408 (2)0.16082 (19)0.0348 (6)
H1250.15640.52720.10360.042*
C1260.03235 (15)0.51233 (19)0.16629 (17)0.0270 (5)
H1260.02370.47910.11310.032*
C1000.40211 (16)0.1117 (2)0.40949 (18)0.0339 (6)
H1000.46110.13430.43620.041*
Cl10.39374 (5)0.02380 (6)0.44430 (6)0.04887 (18)
Cl20.34498 (6)0.19884 (7)0.45463 (7)0.0642 (3)
Cl30.36757 (5)0.12290 (10)0.28457 (5)0.0685 (3)
I10.586539 (10)0.293348 (13)0.433624 (12)0.03129 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01707 (16)0.01936 (16)0.01709 (15)0.00029 (12)0.00449 (12)0.00296 (12)
P10.0202 (3)0.0167 (3)0.0162 (2)0.0016 (2)0.0079 (2)0.0016 (2)
S10.0382 (3)0.0255 (3)0.0257 (3)0.0051 (3)0.0164 (3)0.0105 (2)
N10.0222 (10)0.0349 (11)0.0263 (10)0.0080 (9)0.0128 (8)0.0060 (9)
C10.0195 (10)0.0176 (10)0.0141 (9)0.0006 (8)0.0050 (8)0.0013 (8)
C20.0179 (10)0.0214 (11)0.0177 (10)0.0007 (9)0.0041 (8)0.0040 (8)
C30.0210 (11)0.0237 (11)0.0241 (11)0.0042 (9)0.0031 (9)0.0031 (9)
C40.0280 (12)0.0191 (11)0.0242 (11)0.0026 (9)0.0037 (10)0.0022 (9)
C50.0246 (11)0.0212 (11)0.0167 (10)0.0006 (9)0.0064 (9)0.0001 (8)
C60.0298 (14)0.0541 (18)0.0255 (13)0.0149 (13)0.0061 (11)0.0118 (12)
C70.0471 (16)0.0378 (15)0.0173 (11)0.0080 (12)0.0015 (11)0.0004 (10)
C80.0251 (12)0.0424 (15)0.0198 (11)0.0069 (11)0.0077 (10)0.0125 (10)
C90.0330 (13)0.0300 (13)0.0273 (12)0.0069 (11)0.0079 (10)0.0132 (10)
C100.0225 (13)0.0568 (18)0.0320 (13)0.0130 (12)0.0073 (11)0.0167 (12)
C210.0201 (11)0.0285 (12)0.0207 (10)0.0026 (9)0.0075 (9)0.0040 (9)
C230.0430 (16)0.0575 (19)0.0407 (15)0.0219 (14)0.0232 (13)0.0007 (14)
C240.0346 (15)0.0467 (16)0.0480 (16)0.0167 (13)0.0229 (13)0.0256 (13)
C250.0232 (13)0.0520 (17)0.0382 (14)0.0023 (12)0.0039 (11)0.0032 (13)
C1110.0208 (11)0.0183 (10)0.0200 (10)0.0021 (8)0.0113 (9)0.0017 (8)
C1120.0246 (12)0.0196 (11)0.0228 (10)0.0008 (9)0.0117 (9)0.0018 (9)
C1130.0295 (13)0.0291 (12)0.0204 (11)0.0002 (10)0.0066 (10)0.0013 (9)
C1140.0347 (14)0.0311 (13)0.0225 (11)0.0050 (11)0.0121 (10)0.0076 (10)
C1150.0314 (13)0.0252 (12)0.0326 (13)0.0023 (10)0.0158 (11)0.0065 (10)
C1160.0230 (12)0.0228 (11)0.0263 (11)0.0027 (9)0.0087 (9)0.0010 (9)
C1210.0207 (11)0.0182 (10)0.0231 (10)0.0025 (9)0.0087 (9)0.0006 (8)
C1220.0241 (12)0.0250 (12)0.0246 (11)0.0012 (9)0.0096 (9)0.0002 (9)
C1230.0314 (13)0.0277 (13)0.0399 (14)0.0026 (10)0.0189 (12)0.0000 (11)
C1240.0249 (13)0.0313 (14)0.0527 (16)0.0046 (11)0.0150 (12)0.0068 (12)
C1250.0236 (13)0.0340 (14)0.0396 (14)0.0050 (11)0.0020 (11)0.0021 (11)
C1260.0264 (12)0.0258 (12)0.0264 (12)0.0066 (10)0.0064 (10)0.0026 (9)
C1000.0264 (13)0.0414 (15)0.0296 (13)0.0052 (11)0.0044 (11)0.0017 (11)
Cl10.0362 (4)0.0370 (4)0.0614 (5)0.0056 (3)0.0022 (3)0.0025 (3)
Cl20.0818 (6)0.0558 (5)0.0758 (6)0.0302 (5)0.0536 (5)0.0199 (4)
Cl30.0528 (5)0.1143 (8)0.0300 (4)0.0006 (5)0.0042 (3)0.0028 (4)
I10.02343 (9)0.03225 (10)0.03755 (10)0.00095 (6)0.00995 (7)0.00385 (7)
Geometric parameters (Å, º) top
Fe1—C22.017 (2)C21—H21A0.9900
Fe1—C12.017 (2)C21—H21B0.9900
Fe1—C82.027 (2)C23—H23A0.9800
Fe1—C72.030 (2)C23—H23B0.9800
Fe1—C52.035 (2)C23—H23C0.9800
Fe1—C92.036 (2)C24—H24A0.9800
Fe1—C32.039 (2)C24—H24B0.9800
Fe1—C102.053 (3)C24—H24C0.9800
Fe1—C62.056 (3)C25—H25A0.9800
Fe1—C42.056 (2)C25—H25B0.9800
P1—C11.792 (2)C25—H25C0.9800
P1—C1111.814 (2)C111—C1121.385 (3)
P1—C1211.818 (2)C111—C1161.389 (3)
P1—S11.9524 (7)C112—C1131.386 (3)
N1—C241.492 (3)C112—H1120.9500
N1—C231.495 (3)C113—C1141.380 (3)
N1—C251.497 (3)C113—H1130.9500
N1—C211.527 (3)C114—C1151.375 (4)
C1—C51.435 (3)C114—H1140.9500
C1—C21.453 (3)C115—C1161.385 (3)
C2—C31.424 (3)C115—H1150.9500
C2—C211.490 (3)C116—H1160.9500
C3—C41.403 (3)C121—C1261.388 (3)
C3—H30.9500C121—C1221.395 (3)
C4—C51.414 (3)C122—C1231.382 (3)
C4—H40.9500C122—H1220.9500
C5—H50.9500C123—C1241.383 (4)
C6—C101.405 (4)C123—H1230.9500
C6—C71.417 (4)C124—C1251.377 (4)
C6—H60.9500C124—H1240.9500
C7—C81.412 (4)C125—C1261.390 (3)
C7—H70.9500C125—H1250.9500
C8—C91.406 (3)C126—H1260.9500
C8—H80.9500C100—Cl21.745 (3)
C9—C101.404 (4)C100—Cl11.752 (3)
C9—H90.9500C100—Cl31.753 (3)
C10—H100.9500C100—H1001.0000
C2—Fe1—C142.23 (8)Fe1—C6—H6126.7
C2—Fe1—C8114.24 (9)C8—C7—C6108.0 (2)
C1—Fe1—C8149.55 (9)C8—C7—Fe169.50 (14)
C2—Fe1—C7108.25 (10)C6—C7—Fe170.69 (15)
C1—Fe1—C7118.22 (10)C8—C7—H7126.0
C8—Fe1—C740.74 (11)C6—C7—H7126.0
C2—Fe1—C569.81 (9)Fe1—C7—H7125.4
C1—Fe1—C541.49 (8)C9—C8—C7107.7 (2)
C8—Fe1—C5166.33 (10)C9—C8—Fe170.09 (13)
C7—Fe1—C5152.30 (10)C7—C8—Fe169.76 (13)
C2—Fe1—C9146.24 (9)C9—C8—H8126.2
C1—Fe1—C9169.62 (9)C7—C8—H8126.2
C8—Fe1—C940.51 (10)Fe1—C8—H8125.6
C7—Fe1—C968.06 (11)C10—C9—C8108.3 (2)
C5—Fe1—C9129.32 (10)C10—C9—Fe170.58 (14)
C2—Fe1—C341.11 (9)C8—C9—Fe169.41 (13)
C1—Fe1—C369.65 (9)C10—C9—H9125.8
C8—Fe1—C3105.52 (10)C8—C9—H9125.8
C7—Fe1—C3129.23 (11)Fe1—C9—H9125.8
C5—Fe1—C368.38 (9)C9—C10—C6108.3 (2)
C9—Fe1—C3113.61 (10)C9—C10—Fe169.25 (14)
C2—Fe1—C10171.76 (11)C6—C10—Fe170.12 (15)
C1—Fe1—C10132.36 (10)C9—C10—H10125.8
C8—Fe1—C1067.91 (10)C6—C10—H10125.8
C7—Fe1—C1067.79 (11)Fe1—C10—H10126.4
C5—Fe1—C10110.07 (10)C2—C21—N1115.32 (18)
C9—Fe1—C1040.17 (10)C2—C21—H21A108.4
C3—Fe1—C10147.00 (11)N1—C21—H21A108.4
C2—Fe1—C6132.44 (11)C2—C21—H21B108.4
C1—Fe1—C6111.10 (10)N1—C21—H21B108.4
C8—Fe1—C668.21 (10)H21A—C21—H21B107.5
C7—Fe1—C640.57 (12)N1—C23—H23A109.5
C5—Fe1—C6119.62 (10)N1—C23—H23B109.5
C9—Fe1—C667.65 (11)H23A—C23—H23B109.5
C3—Fe1—C6169.41 (11)N1—C23—H23C109.5
C10—Fe1—C639.98 (12)H23A—C23—H23C109.5
C2—Fe1—C468.76 (9)H23B—C23—H23C109.5
C1—Fe1—C469.09 (9)N1—C24—H24A109.5
C8—Fe1—C4127.30 (10)N1—C24—H24B109.5
C7—Fe1—C4166.46 (11)H24A—C24—H24B109.5
C5—Fe1—C440.42 (9)N1—C24—H24C109.5
C9—Fe1—C4106.63 (10)H24A—C24—H24C109.5
C3—Fe1—C440.07 (9)H24B—C24—H24C109.5
C10—Fe1—C4116.83 (11)N1—C25—H25A109.5
C6—Fe1—C4150.50 (11)N1—C25—H25B109.5
C1—P1—C111105.46 (10)H25A—C25—H25B109.5
C1—P1—C121106.77 (10)N1—C25—H25C109.5
C111—P1—C121101.86 (9)H25A—C25—H25C109.5
C1—P1—S1115.51 (7)H25B—C25—H25C109.5
C111—P1—S1113.33 (7)C112—C111—C116120.0 (2)
C121—P1—S1112.72 (8)C112—C111—P1122.49 (16)
C24—N1—C23109.6 (2)C116—C111—P1117.47 (17)
C24—N1—C25108.6 (2)C111—C112—C113119.9 (2)
C23—N1—C25108.7 (2)C111—C112—H112120.1
C24—N1—C21110.85 (18)C113—C112—H112120.1
C23—N1—C21107.32 (19)C114—C113—C112119.9 (2)
C25—N1—C21111.69 (19)C114—C113—H113120.1
C5—C1—C2106.79 (18)C112—C113—H113120.1
C5—C1—P1123.78 (16)C115—C114—C113120.5 (2)
C2—C1—P1129.43 (16)C115—C114—H114119.7
C5—C1—Fe169.95 (12)C113—C114—H114119.7
C2—C1—Fe168.88 (11)C114—C115—C116120.0 (2)
P1—C1—Fe1125.51 (11)C114—C115—H115120.0
C3—C2—C1107.25 (19)C116—C115—H115120.0
C3—C2—C21122.72 (19)C115—C116—C111119.8 (2)
C1—C2—C21129.7 (2)C115—C116—H116120.1
C3—C2—Fe170.31 (13)C111—C116—H116120.1
C1—C2—Fe168.89 (12)C126—C121—C122119.6 (2)
C21—C2—Fe1121.12 (15)C126—C121—P1120.34 (17)
C4—C3—C2108.9 (2)C122—C121—P1120.05 (17)
C4—C3—Fe170.62 (13)C123—C122—C121120.1 (2)
C2—C3—Fe168.59 (12)C123—C122—H122120.0
C4—C3—H3125.6C121—C122—H122120.0
C2—C3—H3125.6C122—C123—C124120.2 (2)
Fe1—C3—H3126.8C122—C123—H123119.9
C3—C4—C5108.8 (2)C124—C123—H123119.9
C3—C4—Fe169.31 (13)C125—C124—C123119.9 (2)
C5—C4—Fe168.99 (12)C125—C124—H124120.0
C3—C4—H4125.6C123—C124—H124120.0
C5—C4—H4125.6C124—C125—C126120.5 (2)
Fe1—C4—H4127.7C124—C125—H125119.8
C4—C5—C1108.33 (19)C126—C125—H125119.8
C4—C5—Fe170.59 (12)C121—C126—C125119.7 (2)
C1—C5—Fe168.56 (11)C121—C126—H126120.1
C4—C5—H5125.8C125—C126—H126120.1
C1—C5—H5125.8Cl2—C100—Cl1109.90 (14)
Fe1—C5—H5126.6Cl2—C100—Cl3109.62 (14)
C10—C6—C7107.6 (2)Cl1—C100—Cl3110.86 (15)
C10—C6—Fe169.89 (15)Cl2—C100—H100108.8
C7—C6—Fe168.74 (15)Cl1—C100—H100108.8
C10—C6—H6126.2Cl3—C100—H100108.8
C7—C6—H6126.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24C···I10.983.054.001 (3)163
C100—H100···I11.002.933.810 (3)147
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24C···I10.983.054.001 (3)163.2
C100—H100···I11.002.933.810 (3)147.4
Comparison of the Cp—C—NMe3 framework (Å, °) in the title compound and related structures in the CSD. top
N1···Cp is the distance of the N atom from the Cp ring, C21···Cp is the distance of the C21 atom from the Cp ring and Ang1 is the dihedral angle between the Cp ring and the plane defined by C2—C21—N1.
ReferenceC2—C21C21—N1N1···CpC21···CpAng
This study1.490 (3)1.527 (3)1.182 (2)-0.128 (2)83.2 (2)
ASAZIE1.4761.5301.253-0.09687.49
BUBCOQ1.5051.5201.256-0.10690.0
BUBCUW(1)1.5181.5311.260-0.09584.38
BUBCUW(2)1.4941.5251.311-0.04887.72
DEHHUU1.4821.5241.220-0.11190.0
EDUQUP1.4931.5251.294-0.07288.68
HABDUL(1)1.4931.5201.167-0.14787.20
HABDUL(2)1.4671.4721.270-0.03385.45
HABFAT(1)1.4601.5301.233-0.12586.58
HABFAT(2)1.4781.5401.125-0.16784.17
HABFAT(3)1.4991.5261.309-0.06388.73
HIZFOM(1)1.4711.5191.327-0.02981.08
HIZFOM(2)1.4471.5251.425-0.03290.0
HIZFOM(3)1.4321.5151.393-0.04283.97
HIZFOM(4)1.3361.5291.335-0.00790.0
IBIROB(1)1.4931.5291.197-0.14288.83
IBIROB(2)1.4701.5371.324-0.06082.55
IGEPUG(1)1.5191.5201.248-0.06677.69
IGEPUG(2)1.5221.5230.999-0.27485.92
IGEPUG(3)1.5141.5331.914-0.42681.02
IGEPUG(4)1.5161.5331.152-0.16383.23
IGEQAN(1)1.4621.5331.251-0.10682.66
IGEQAN(2)1.4811.5431.216-0.12387.22
IKONOL1.4851.5221.223-0.10084.09
IKONOL011.4841.5141.223-0.09790.0
IKONUR1.4951.5261.177-0.13486.93
IKUZOD(1)1.4931.5301.272-0.07380.32
IKUZOD(2)1.4871.5281.316-0.05082.74
IKUZUJ(1)1.4841.5351.290-0.07288.63
IKUZUJ(2)1.4891.5371.256-0.09487.41
IQUCIG1.4851.5281.263-0.08379.62
JUHXEP1.4711.5161.283-0.06688.29
JUJDOH1.4821.5361.330-0.05688.54
JUJDOH011.4881.5101.327-0.03387.68
JUJFEZ1.4851.5301.225-0.11188.50
LEJHIR1.4881.5211.129-0.14176.82
LEJHOX(1)1.5021.5231.200-0.12083.12
LEJHOX(2)1.4841.5261.203-0.12786.84
LIFWUS(1)1.5091.5361.127-0.16678.64
LIFWUS(2)1.4851.5441.101-0.12769.81
LIFXAZ1.4941.5251.125-0.12970.44
NAGHOU1.5011.5271.256-0.06077.63
NAGHUA(1)1.4891.5261.235-0.09779.70
NAGHUA(2)1.4951.5281.182-0.12979.44
NATZEO1.4591.5491.295-0.07489.24
NEYSIT1.4861.5251.256-0.09086.76
SAZWIA1.4721.5301.188-0.11980.76
WASGED(1)1.4891.5331.181-0.15088.52
WASGED(2)1.4881.5231.239-0.10188.53
WASGED(3)1.4791.5181.241-0.09388.22
XAJNIF(1)1.4811.5191.318-0.05487.91
XAJNIF(2)1.4881.5321.325-0.04987.05
XEQKIN1.4971.5311.378-0.01284.17
YOVGOF1.4881.5241.265-0.05775.89
Notes: ASAZIE (Bai et al., 2011); BUBCOQ (Zhuji et al., 1982); BUBCUW (Yongmao et al., 1982); DEHHUU (Volkov et al., 2006); EDUQUP (Reynes et al., 2002); HABDUL (Xu et al., 2010); HABFAT (Xu et al., 2010) ; HIZFOM (Selvapalam et al., 2007); IBIROB (Hu et al., 2004); IGEPUG (Li et al., 2009); IGEQAN (Li et al., 2009); IKONOL (Ballester et al., 2003); IKOOL01 (Herbstein & Kapon, 2008); IKONUR (Ballester et al., 2003); IKUZOD (Volkov et al., 2003); IKUZUJ (Volkov et al., 2003); IQUCIG (Blake et al., 2004); JUHXEP (Pullen et al., 1998); JUJDOH (Pullen et al., 1998); JUJDOH01 (Pullen et al., 1998); JUJFEZ (Pullen et al., 1998); LEJHIR (Ferguson et al., 1994); LEJHOX (Ferguson et al., 1994); LIFWUS (Malezieux et al., 1994); LIFXAZ (Malezieux et al., 1994); NAGHOU (Broomsgrove et al., 2010); NAGHUA (Broomsgrove et al., 2010) ; NATZEO (Hong et al., 2005); NEYSIT (Chohan et al., 1997); SAZWIA (Sharma et al., 2006); WASGED (Volkov et al., 2005); XAJNIF (Hosmane et al., 1998); XEQKIN (Deck et al., 2000); YOVGOF (Veya & Kochi, 1995).
Acknowledgements top

AK thanks the Ministry of Education, Science, Youth and Sports of Ukraine for funding his stay at the LCC.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chim. 13, 890–899.

Bai, Y., Zhang, G. Q., Dang, D. B., Qi, Z. Y. & Zhang, L. (2011). Z. Naturforsch. Teil B, 66, 549–552.

Ballester, L., Gil, A. M., Gutierrez, A., Perpinan, M. F., Sanchez, A. E., Fonari, M., Suwinska, K. & Belsky, V. (2003). Eur. J. Inorg. Chem. pp. 3034–3041.

Blake, A. J., Caltagirone, C., Lippolis, V., Schröder, M. & Wilson, C. (2004). Acta Cryst. E60, m20–m21.

Broomsgrove, A. E. J., Addy, D. A., Di Paolo, A., Morgan, I. R., Bresner, C., Chislett, V., Fallis, I. A., Thompson, A. L., Vidovic, D. & Aldridge, S. (2010). Inorg. Chem. 49, 157–173.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Chohan, Z. H., Howie, R. A., Wardell, J. L., Wilkens, R. & Doidge-Harrison, S. M. S. V. (1997). Polyhedron, 16, 2689–2696.

Debono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879–1882.

Deck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013–1024.

Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1994). Acta Cryst. B50, 146–150.

Herbstein, F. H. & Kapon, M. (2008). Struct. Chem. 19, 679–682.

Hong, J., Tang, L.-F., Yang, Z., Zhai, Y.-P. & Nan, M. (2005). Transition Met. Chem. 30, 439–444.

Hosmane, N. S., Franken, A., Zhang, G., Srivastava, R. R., Smith, R. Y. & Spielvogel, B. F. (1998). Main Group Met. Chem. 21, 319–324.

Hu, J., Barbour, L. J. & Gokel, G. W. (2004). New J. Chem. 28, 907–911.

Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064–1073.

Li, Z., Liu, B., Xu, H., Xue, G., Hu, H., Fu, F. & Wang, J. (2009). J. Organomet. Chem. 694, 2210–2216.

Malezieux, B., Gruselle, M., Troitskaya, L. L., Sokolov, V. I. & Vaissermann, J. (1994). Organometallics, 13, 2979–2986.

Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.

Pullen, A. E., Faulmann, C., Pokhodnya, K. I., Cassoux, P. & Tokumoto, M. (1998). Inorg. Chem. 37, 6714–6720.

Reynes, O., Moutet, J.-C., Pecaut, J., Royal, G. & Saint-Aman, E. (2002). New J. Chem. 26, 9–12.

Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.

Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073.

Selvapalam, N., Kim, H., Sobransingh, D., Kaifer, A. E., Liu, S., Isaacs, L., Chen, W., Moghaddam, S., Gilson, M. K., Kim, K. & Inoue, Y. (2007). Proc. Natl Acad. Sci. USA, 104, 20737–20742.

Sharma, P., Lopez, J. G., Ortega, C., Rosas, N., Cabrera, A., Alvarez, C., Toscano, A. & Reyes, E. (2006). Inorg. Chem. Commun. 9, 82–85.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Veya, P. L. & Kochi, J. K. (1995). J. Organomet. Chem. 488, C4–C8.

Volkov, O., Hu, C., Kolle, V. & Paetzold, P. (2005). Z. Anorg. Allg. Chem. 631, 1909–1911.

Volkov, O., Paetzold, P. & Hu, C. (2006). Z. Anorg. Allg. Chem. 632, 945–948.

Volkov, O., Rath, N. P. & Barton, L. (2003). J. Organomet. Chem. 680, 212–217.

Xu, H., Zhang, L., Li, Z., Li, Z., Hu, H. & Xue, G. (2010). J. Cluster Sci. 21, 211–221.

Yongmao, Z., Zhaoping, C., Zhiwei, C., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 45–46.

Zhuji, F., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 57–59.