organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-2-(4-methyl­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 29 October 2012; accepted 30 October 2012; online 14 November 2012)

In the title compound, C16H13FO2S, the 4-methyl­phenyl ring makes a dihedral angle of 29.53 (4)° with the mean plane of the benzofuran fragment [r.m.s. deviation = 0.004 (1) Å]. In the crystal, mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming inversion dimers that stack along the a axis.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2084.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2115.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FO2S

  • Mr = 288.32

  • Triclinic, [P \overline 1]

  • a = 8.0407 (2) Å

  • b = 8.0838 (2) Å

  • c = 11.3517 (2) Å

  • α = 80.126 (1)°

  • β = 85.091 (1)°

  • γ = 66.773 (1)°

  • V = 667.88 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.53 × 0.40 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.746

  • 12234 measured reflections

  • 3307 independent reflections

  • 3095 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.09

  • 3307 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.54 3.4138 (16) 154
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-fluoro-3-methylsulfinyl-1-benzofuran derivatives with various substituents in the 2-position, such as 4-bromophenyl (Choi et al., 2009a) or 4-iodophenyl (Choi et al., 2009b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (1) Å from the mean plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran ring is 29.53 (4)°.

In the crystal, molecules are connected by a pair of weak C—H···O hydrogen bonds, forming inversion dimers that stack along the a axis (Table 1).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2009a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-fluoro-2-(4-methylphenyl)-3-methylsulfanyl-1-benzofuran (326 mg, 1.1 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 417–418 K; Rf = 0.45 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and = 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
5-Fluoro-2-(4-methylphenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H13FO2SZ = 2
Mr = 288.32F(000) = 300
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Melting point < 418 K
a = 8.0407 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0838 (2) ÅCell parameters from 7852 reflections
c = 11.3517 (2) Åθ = 2.8–28.3°
α = 80.126 (1)°µ = 0.25 mm1
β = 85.091 (1)°T = 173 K
γ = 66.773 (1)°Block, colourless
V = 667.88 (3) Å30.53 × 0.40 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3307 independent reflections
Radiation source: rotating anode3095 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.020
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.8°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.701, Tmax = 0.746l = 1515
12234 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2225P]
where P = (Fo2 + 2Fc2)/3
3307 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H13FO2Sγ = 66.773 (1)°
Mr = 288.32V = 667.88 (3) Å3
Triclinic, P1Z = 2
a = 8.0407 (2) ÅMo Kα radiation
b = 8.0838 (2) ŵ = 0.25 mm1
c = 11.3517 (2) ÅT = 173 K
α = 80.126 (1)°0.53 × 0.40 × 0.24 mm
β = 85.091 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3307 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3095 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.746Rint = 0.020
12234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.09Δρmax = 0.24 e Å3
3307 reflectionsΔρmin = 0.38 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33118 (4)0.20343 (4)0.41621 (3)0.02410 (10)
O10.15249 (12)0.70005 (11)0.50374 (7)0.02400 (18)
F10.01539 (13)0.79204 (12)0.03932 (7)0.0428 (2)
O20.21524 (13)0.17958 (13)0.33018 (10)0.0378 (2)
C10.24601 (16)0.43759 (15)0.42709 (10)0.0221 (2)
C90.30709 (16)0.43979 (16)0.64794 (10)0.0223 (2)
C80.23981 (16)0.51353 (15)0.52688 (10)0.0221 (2)
C70.10062 (16)0.74208 (16)0.38628 (10)0.0226 (2)
C100.46136 (17)0.28077 (17)0.67089 (11)0.0260 (2)
H100.52460.21850.60680.031*
C20.15628 (16)0.58455 (15)0.33364 (10)0.0221 (2)
C140.21693 (17)0.53140 (17)0.74329 (11)0.0260 (2)
H140.11170.64010.72920.031*
C30.11782 (17)0.59876 (17)0.21373 (11)0.0267 (2)
H30.15270.49500.17450.032*
C120.43513 (19)0.30326 (18)0.88157 (11)0.0294 (3)
C110.52340 (18)0.21267 (18)0.78664 (11)0.0292 (3)
H110.62740.10290.80110.035*
C60.01006 (17)0.91590 (17)0.32716 (11)0.0274 (3)
H60.02441.02020.36580.033*
C130.28174 (19)0.46301 (18)0.85797 (11)0.0299 (3)
H130.22030.52640.92210.036*
C50.02757 (18)0.92941 (18)0.20837 (12)0.0303 (3)
H50.08991.04520.16290.036*
C160.53640 (17)0.19025 (18)0.33560 (12)0.0293 (3)
H16A0.59510.07080.30920.044*
H16B0.61780.20690.38770.044*
H16C0.50850.28590.26570.044*
C40.02649 (18)0.77212 (19)0.15608 (11)0.0297 (3)
C150.5046 (2)0.2319 (2)1.00707 (13)0.0438 (4)
H15A0.61360.12001.00670.066*
H15B0.41140.20571.05890.066*
H15C0.53410.32351.03710.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02488 (16)0.01864 (15)0.02810 (16)0.00752 (11)0.00168 (11)0.00507 (11)
O10.0276 (4)0.0198 (4)0.0228 (4)0.0066 (3)0.0014 (3)0.0045 (3)
F10.0568 (6)0.0438 (5)0.0221 (4)0.0142 (4)0.0091 (4)0.0014 (3)
O20.0297 (5)0.0315 (5)0.0574 (6)0.0110 (4)0.0052 (4)0.0204 (5)
C10.0231 (5)0.0196 (5)0.0228 (5)0.0074 (4)0.0002 (4)0.0038 (4)
C90.0237 (5)0.0230 (5)0.0216 (5)0.0105 (4)0.0004 (4)0.0035 (4)
C80.0218 (5)0.0197 (5)0.0238 (5)0.0070 (4)0.0009 (4)0.0037 (4)
C70.0227 (5)0.0229 (5)0.0221 (5)0.0087 (4)0.0005 (4)0.0037 (4)
C100.0249 (6)0.0278 (6)0.0240 (6)0.0082 (5)0.0001 (4)0.0060 (4)
C20.0217 (5)0.0209 (5)0.0234 (5)0.0081 (4)0.0006 (4)0.0031 (4)
C140.0275 (6)0.0244 (6)0.0260 (6)0.0094 (5)0.0015 (5)0.0060 (4)
C30.0301 (6)0.0275 (6)0.0231 (5)0.0115 (5)0.0002 (5)0.0047 (4)
C120.0354 (7)0.0332 (6)0.0232 (6)0.0173 (5)0.0050 (5)0.0020 (5)
C110.0267 (6)0.0289 (6)0.0290 (6)0.0077 (5)0.0050 (5)0.0017 (5)
C60.0271 (6)0.0214 (5)0.0310 (6)0.0069 (5)0.0005 (5)0.0033 (5)
C130.0362 (7)0.0327 (6)0.0233 (6)0.0150 (6)0.0024 (5)0.0083 (5)
C50.0295 (6)0.0250 (6)0.0308 (6)0.0070 (5)0.0031 (5)0.0031 (5)
C160.0263 (6)0.0314 (6)0.0305 (6)0.0105 (5)0.0036 (5)0.0091 (5)
C40.0324 (6)0.0342 (7)0.0210 (5)0.0125 (5)0.0030 (5)0.0002 (5)
C150.0576 (10)0.0467 (9)0.0260 (7)0.0186 (8)0.0123 (6)0.0012 (6)
Geometric parameters (Å, º) top
S1—O21.4907 (10)C3—C41.3738 (18)
S1—C11.7637 (11)C3—H30.9500
S1—C161.7911 (13)C12—C111.3897 (18)
O1—C71.3767 (14)C12—C131.3937 (19)
O1—C81.3770 (14)C12—C151.5082 (17)
F1—C41.3625 (14)C11—H110.9500
C1—C81.3665 (16)C6—C51.3839 (18)
C1—C21.4422 (16)C6—H60.9500
C9—C101.3935 (17)C13—H130.9500
C9—C141.4009 (16)C5—C41.3917 (19)
C9—C81.4589 (16)C5—H50.9500
C7—C61.3814 (16)C16—H16A0.9800
C7—C21.3945 (16)C16—H16B0.9800
C10—C111.3878 (17)C16—H16C0.9800
C10—H100.9500C15—H15A0.9800
C2—C31.3971 (16)C15—H15B0.9800
C14—C131.3835 (17)C15—H15C0.9800
C14—H140.9500
O2—S1—C1106.91 (6)C11—C12—C15120.89 (13)
O2—S1—C16105.80 (6)C13—C12—C15120.67 (12)
C1—S1—C1697.50 (6)C10—C11—C12120.76 (12)
C7—O1—C8106.64 (9)C10—C11—H11119.6
C8—C1—C2107.14 (10)C12—C11—H11119.6
C8—C1—S1126.89 (9)C7—C6—C5116.19 (11)
C2—C1—S1125.80 (9)C7—C6—H6121.9
C10—C9—C14118.99 (11)C5—C6—H6121.9
C10—C9—C8121.35 (10)C14—C13—C12121.48 (12)
C14—C9—C8119.65 (11)C14—C13—H13119.3
C1—C8—O1110.59 (10)C12—C13—H13119.3
C1—C8—C9133.89 (11)C6—C5—C4119.51 (12)
O1—C8—C9115.52 (10)C6—C5—H5120.2
O1—C7—C6125.11 (11)C4—C5—H5120.2
O1—C7—C2110.54 (10)S1—C16—H16A109.5
C6—C7—C2124.33 (11)S1—C16—H16B109.5
C11—C10—C9120.55 (11)H16A—C16—H16B109.5
C11—C10—H10119.7S1—C16—H16C109.5
C9—C10—H10119.7H16A—C16—H16C109.5
C7—C2—C3119.30 (11)H16B—C16—H16C109.5
C7—C2—C1105.09 (10)F1—C4—C3117.81 (12)
C3—C2—C1135.61 (11)F1—C4—C5117.39 (11)
C13—C14—C9119.77 (12)C3—C4—C5124.80 (12)
C13—C14—H14120.1C12—C15—H15A109.5
C9—C14—H14120.1C12—C15—H15B109.5
C4—C3—C2115.87 (11)H15A—C15—H15B109.5
C4—C3—H3122.1C12—C15—H15C109.5
C2—C3—H3122.1H15A—C15—H15C109.5
C11—C12—C13118.44 (11)H15B—C15—H15C109.5
O2—S1—C1—C8144.62 (11)C8—C1—C2—C70.31 (13)
C16—S1—C1—C8106.28 (12)S1—C1—C2—C7175.22 (9)
O2—S1—C1—C230.03 (12)C8—C1—C2—C3179.87 (13)
C16—S1—C1—C279.07 (11)S1—C1—C2—C34.6 (2)
C2—C1—C8—O10.23 (13)C10—C9—C14—C130.10 (18)
S1—C1—C8—O1175.69 (8)C8—C9—C14—C13179.19 (11)
C2—C1—C8—C9179.10 (12)C7—C2—C3—C40.33 (17)
S1—C1—C8—C95.4 (2)C1—C2—C3—C4179.86 (13)
C7—O1—C8—C10.68 (13)C9—C10—C11—C121.2 (2)
C7—O1—C8—C9179.78 (9)C13—C12—C11—C100.7 (2)
C10—C9—C8—C129.5 (2)C15—C12—C11—C10178.63 (13)
C14—C9—C8—C1151.45 (13)O1—C7—C6—C5179.08 (11)
C10—C9—C8—O1149.35 (11)C2—C7—C6—C50.79 (19)
C14—C9—C8—O129.72 (15)C9—C14—C13—C120.41 (19)
C8—O1—C7—C6179.38 (11)C11—C12—C13—C140.1 (2)
C8—O1—C7—C20.89 (13)C15—C12—C13—C14179.43 (13)
C14—C9—C10—C110.90 (18)C7—C6—C5—C40.17 (19)
C8—C9—C10—C11179.98 (11)C2—C3—C4—F1179.35 (11)
O1—C7—C2—C3179.40 (10)C2—C3—C4—C50.3 (2)
C6—C7—C2—C30.90 (18)C6—C5—C4—F1179.26 (12)
O1—C7—C2—C10.74 (13)C6—C5—C4—C30.4 (2)
C6—C7—C2—C1179.25 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.543.4138 (16)154
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13FO2S
Mr288.32
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.0407 (2), 8.0838 (2), 11.3517 (2)
α, β, γ (°)80.126 (1), 85.091 (1), 66.773 (1)
V3)667.88 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.53 × 0.40 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.701, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12234, 3307, 3095
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.09
No. of reflections3307
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.543.4138 (16)154
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2084.  Web of Science CSD CrossRef IUCr Journals
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2115.  Web of Science CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds