supplementary materials


xu5647 scheme

Acta Cryst. (2012). E68, m1542    [ doi:10.1107/S1600536812046107 ]

(Nitrato-[kappa]2O,O')bis[(E)-N-(pyridin-4-ylmethylidene-[kappa]N)hydroxyamine]silver(I)

S. Gao and S. W. Ng

Abstract top

In the mononuclear title compound, [Ag(NO3)(C6H6N2O)2], the AgI atom is located on a twofold rotation axis and the nitrate-chelated AgI atom is further coordinated by two aromatic N atoms of hydroxylamine ligands in a distorted tetrahedral geometry. In the crystal, the nitrate ion has 2 symmetry with the N atom and one O atom located on the twofold rotation axis, and is linked to hydroxy groups of the hydroxylamine ligands by O-H...O hydrogen bonds, generating a chain running along the b axis.

Comment top

Picolinylaldehyde oxime reacts with silver nitrate to yield a monomeric adduct in which the metal atom is N,N'-chelated by the ligand. The nitrate ion is also involved in coordination (Abu-Youssef et al., 2010). The corresponding reaction with isonicotinylaldehyde in place of picolinylaldehyde yields a bis adduct (Scheme I). The nitrate-chelated AgI atom in mononuclear Ag(NO3)(C6H6N2O)2 is coordinated to the hydroxylamine through its aromatic N atom, and it exists in an approximate tetrahedral geometry (Fig. 1). The hydroxyl OH group forms a hydrogen bond with a nitrate O atom to generate a chain running along the longest axis of the orthorhombic unit cell (Table 1).

Related literature top

For (nitrato)(picolinaldehyde oxime)silver, see: Abu-Youssef et al. (2010).

Experimental top

Isonicotinaldehyde oxime was synthesized from the reaction of isonicotinaldehyde and hydroxylamine. Silver nitrate (1 mmol) dissolved in water (5 ml) was added to picolinaldehyde oxime (1 mmol) dissolved in ethanol (5 ml). The solution was filtered and set aside, away from light, for the growth of colorless crystals.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.93 Å, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ag(NO3)(C6H6N2O)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
(Nitrato-κ2O,O')bis[(E)-N-(pyridin-4- ylmethylidene-κN)hydroxyamine]silver(I) top
Crystal data top
[Ag(NO3)(C6H6N2O)2]F(000) = 824
Mr = 414.14Dx = 1.838 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4605 reflections
a = 18.027 (3) Åθ = 3.2–27.5°
b = 4.6907 (6) ŵ = 1.38 mm1
c = 17.7020 (19) ÅT = 293 K
V = 1496.9 (3) Å3Prism, colorless
Z = 40.20 × 0.12 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1705 independent reflections
Radiation source: fine-focus sealed tube1038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2323
Tmin = 0.770, Tmax = 0.852k = 56
13223 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.073P)2 + 1.2436P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
1705 reflectionsΔρmax = 0.92 e Å3
108 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0096 (16)
Crystal data top
[Ag(NO3)(C6H6N2O)2]V = 1496.9 (3) Å3
Mr = 414.14Z = 4
Orthorhombic, PccnMo Kα radiation
a = 18.027 (3) ŵ = 1.38 mm1
b = 4.6907 (6) ÅT = 293 K
c = 17.7020 (19) Å0.20 × 0.12 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1705 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1038 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.852Rint = 0.082
13223 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.92 e Å3
S = 1.13Δρmin = 0.67 e Å3
1705 reflectionsAbsolute structure: ?
108 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.25000.25000.18639 (3)0.0532 (4)
O10.5757 (2)1.5200 (8)0.0886 (2)0.0584 (11)
H10.61431.55750.11320.088*
O20.3058 (3)0.1732 (13)0.3234 (2)0.0789 (15)
O30.25000.25000.4306 (3)0.093 (3)
N10.3325 (2)0.5683 (9)0.1548 (2)0.0454 (11)
N20.5350 (3)1.3109 (9)0.1264 (2)0.0487 (11)
N30.25000.25000.3606 (4)0.067 (2)
C10.3371 (3)0.6602 (14)0.0824 (3)0.0487 (13)
H1A0.30670.57520.04640.058*
C20.3841 (3)0.8714 (12)0.0598 (2)0.0426 (12)
H20.38400.93180.00980.051*
C30.4321 (2)0.9961 (10)0.1113 (3)0.0397 (11)
C40.4286 (3)0.9016 (12)0.1858 (3)0.0466 (13)
H40.46010.97820.22220.056*
C50.3783 (3)0.6940 (12)0.2050 (3)0.0454 (13)
H50.37560.63710.25520.055*
C60.4830 (3)1.2177 (11)0.0848 (3)0.0459 (13)
H60.47711.29190.03650.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0461 (5)0.0541 (5)0.0594 (5)0.0093 (3)0.0000.000
O10.051 (2)0.064 (3)0.060 (2)0.022 (2)0.0052 (18)0.007 (2)
O20.054 (3)0.124 (4)0.059 (3)0.037 (3)0.006 (2)0.002 (2)
O30.084 (6)0.155 (10)0.040 (3)0.050 (5)0.0000.000
N10.038 (2)0.047 (3)0.051 (2)0.007 (2)0.0030 (19)0.003 (2)
N20.049 (3)0.050 (3)0.046 (2)0.009 (2)0.003 (2)0.0004 (19)
N30.057 (5)0.084 (6)0.061 (5)0.020 (4)0.0000.000
C10.040 (3)0.061 (3)0.045 (3)0.002 (3)0.002 (2)0.005 (3)
C20.039 (3)0.050 (3)0.039 (3)0.000 (3)0.000 (2)0.003 (2)
C30.034 (2)0.040 (3)0.045 (3)0.002 (2)0.003 (2)0.001 (2)
C40.047 (3)0.045 (3)0.047 (3)0.004 (3)0.004 (2)0.000 (2)
C50.043 (3)0.053 (3)0.041 (3)0.009 (2)0.001 (2)0.002 (2)
C60.046 (3)0.051 (3)0.041 (2)0.002 (2)0.005 (2)0.000 (2)
Geometric parameters (Å, º) top
Ag1—N1i2.180 (4)N3—O2i1.256 (6)
Ag1—N12.180 (4)C1—C21.364 (9)
Ag1—O22.651 (4)C1—H1A0.9300
Ag1—O2i2.651 (4)C2—C31.386 (7)
O1—N21.396 (5)C2—H20.9300
O1—H10.8400C3—C41.393 (6)
O2—N31.256 (6)C3—C61.463 (7)
O3—N31.239 (9)C4—C51.374 (8)
N1—C51.349 (6)C4—H40.9300
N1—C11.354 (6)C5—H50.9300
N2—C61.270 (7)C6—H60.9300
N1i—Ag1—N1150.3 (2)C2—C1—H1A118.4
N1i—Ag1—O2113.62 (18)C1—C2—C3120.1 (4)
N1—Ag1—O293.94 (18)C1—C2—H2119.9
N1i—Ag1—O2i93.94 (18)C3—C2—H2119.9
N1—Ag1—O2i113.62 (18)C2—C3—C4117.4 (4)
O2—Ag1—O2i47.57 (19)C2—C3—C6118.7 (4)
N2—O1—H1109.5C4—C3—C6123.9 (4)
N3—O2—Ag197.9 (4)C5—C4—C3119.3 (5)
C5—N1—C1116.5 (5)C5—C4—H4120.3
C5—N1—Ag1123.2 (3)C3—C4—H4120.3
C1—N1—Ag1120.2 (3)N1—C5—C4123.5 (5)
C6—N2—O1110.6 (4)N1—C5—H5118.3
O3—N3—O2i121.6 (4)C4—C5—H5118.3
O3—N3—O2121.6 (4)N2—C6—C3121.4 (5)
O2i—N3—O2116.7 (7)N2—C6—H6119.3
N1—C1—C2123.2 (5)C3—C6—H6119.3
N1—C1—H1A118.4
N1i—Ag1—O2—N372.7 (4)Ag1—N1—C1—C2175.7 (4)
N1—Ag1—O2—N3118.8 (3)N1—C1—C2—C32.3 (9)
O2i—Ag1—O2—N30.000 (1)C1—C2—C3—C41.5 (8)
N1i—Ag1—N1—C5171.4 (4)C1—C2—C3—C6178.7 (5)
O2—Ag1—N1—C512.8 (4)C2—C3—C4—C50.5 (8)
O2i—Ag1—N1—C532.1 (5)C6—C3—C4—C5179.4 (5)
N1i—Ag1—N1—C112.1 (4)C1—N1—C5—C41.1 (8)
O2—Ag1—N1—C1170.6 (4)Ag1—N1—C5—C4177.7 (4)
O2i—Ag1—N1—C1144.4 (4)C3—C4—C5—N11.8 (9)
Ag1—O2—N3—O3180.0O1—N2—C6—C3179.9 (4)
Ag1—O2—N3—O2i0.000 (1)C2—C3—C6—N2170.0 (5)
C5—N1—C1—C21.0 (8)C4—C3—C6—N210.2 (8)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.841.902.740 (6)173
Symmetry code: (ii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.902.740 (6)172.8
Symmetry code: (i) x+1, y+3/2, z+1/2.
Acknowledgements top

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Abu-Youssef, M. A., Soliman, S. V., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Öhrström, L. R. (2010). Inorg. Chem. 49, 9788–9797.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.