supplementary materials


xu5648 scheme

Acta Cryst. (2012). E68, m1540-m1541    [ doi:10.1107/S1600536812046090 ]

Poly[[[[mu]3-(E)-N-(pyridin-4-ylmethylidene)hydroxylaminato-[kappa]3O:N:N'][[mu]2-(E)-N-(pyridin-4-ylmethylidene)hydroxylamine-[kappa]2N:N'][(E)-N-(pyridin-4-ylmethylidene-[kappa]N)hydroxylamine]disilver(I)] nitrate]

S. Gao and S. W. Ng

Abstract top

The title coordination polymer, {[Ag2(C6H5N2O)(C6H6N2O)2]NO3}n, features a deprotonated N-(pyridin-4-ylmethylidene)hydroxylaminate anion and two neutral N-(pyridin-4-ylmethylidene)hydroxylamine molecules in the asymmetric unit. The anion connects three AgI atoms through its O and two N-donor atoms. One neutral ligand functions in a monodentate mode; the other functions in a bridging mode, binding though its two N atoms. The coordination geometry of the two independent metal atoms is T-shaped; the manner of bridging gives rise to a layer motif parallel to (100). In the crystal, the nitrate ion is disordered over two positions in a 1:1 ratio, and is sandwiched between adjacent layers. O-H...O hydrogen bonding is present between nitrate ions and layers, and also between adjacent layers.

Comment top

The preceding report presents the crystal structure of bis(isonicotinylaldehyde oxide)(nitrato)silver (Gao & Ng, 2012). When some ammonium hydroxide was added to the reaction, the acid hydrogen of the isonicotinylaldehyde oxide is partially removed so that the product consists of a cation having two AgI atoms, one deprotonated ligand and two neutral ligands. The charge is balanced by a nitrate anion. The dinuclear cations are linked by coordination bonds into a polycation (Scheme I). The coordination polymer features a deprotonated N-(pyridin-4-ylmethylidene)hydroxylamine and two neutral N-(pyridin-4-ylmethylidene)hydroxylamine molecules. The anion connects three AgI atoms through its O and two N donor-atoms. One neutral ligand functions in a monodentate mode; the other functions in a bridging mode, binding though its two N atoms. The geometry of the two independent metal atoms is T-shaped (Fig. 1); the manner of bridge gives rise to a layer motif. The anion is sandwiched between adjacent layers (Fig. 2).

Related literature top

For mononuclear bis(isonicotinylaldehyde oxide)(nitrato)silver, see: Gao & Ng (2012).

Experimental top

Isonicotinaldehyde oxime was synthesized from the reaction of isonicotinaldehyde and hydroxylamine. Silver nitrate (1 mmol) dissolved in water (5 ml) was added to picolinaldehyde oxime (1 mmol) dissolved in ethanol (5 ml). Several drops of ammonium hydroxide were added. The solution was filtered and set aside, away from light, for the growth of colorless crystals.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.93 Å, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

The nitrate ion is disordered over two positions in a 1:1 ratio. Nitrogen–oxygen distances were restrained to 1.24±0.01 A and oxygen···oxygen contacts to 2.15±0.01 Å. For each component, the temperature factors of the O atoms were made identical. The temperature factors of the N atoms of the two components were made identical too. The isotropic temperature factors were tightly restrained.

The (3 9 9), (-7 10 13) and (-3 7 18) reflections were omitted.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of polymeric [Ag2(C6H5N2O)(C6H6N2O)2] NO3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the nitrate is not shown.
[Figure 2] Fig. 2. Layer motif.
Poly[[[µ3-(E)-N-(pyridin-4-ylmethylidene)hydroxylaminato- κ3O:N:N'][µ2-(E)-N-(pyridin-4- ylmethylidene)hydroxylamine-κ2N:N'][(E)-N- (pyridin-4-ylmethylidene-κN)hydroxylamine]disilver(I)] nitrate] top
Crystal data top
[Ag2(C6H5N2O)(C6H6N2O)2]NO3F(000) = 1264
Mr = 643.13Dx = 1.931 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10662 reflections
a = 13.1628 (18) Åθ = 3.1–27.5°
b = 10.9926 (18) ŵ = 1.82 mm1
c = 16.315 (2) ÅT = 293 K
β = 110.412 (4)°Prism, colorless
V = 2212.4 (6) Å30.20 × 0.12 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5047 independent reflections
Radiation source: fine-focus sealed tube3355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.712, Tmax = 0.811k = 1414
21226 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
5047 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.77 e Å3
26 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ag2(C6H5N2O)(C6H6N2O)2]NO3V = 2212.4 (6) Å3
Mr = 643.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1628 (18) ŵ = 1.82 mm1
b = 10.9926 (18) ÅT = 293 K
c = 16.315 (2) Å0.20 × 0.12 × 0.12 mm
β = 110.412 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5047 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3355 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.811Rint = 0.047
21226 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.77 e Å3
S = 1.07Δρmin = 0.43 e Å3
5047 reflectionsAbsolute structure: ?
306 parametersFlack parameter: ?
26 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.82406 (3)0.44988 (5)0.68283 (2)0.0906 (2)
Ag20.45572 (3)0.01686 (3)0.114909 (19)0.06273 (15)
O10.6234 (2)0.4403 (3)0.57575 (15)0.0523 (6)
O21.0680 (3)0.1718 (4)0.3037 (2)0.1041 (13)
H21.09460.10230.30410.156*
O30.6612 (3)0.8349 (3)1.07189 (16)0.0633 (8)
H30.65320.91041.07440.095*
O41.1249 (5)0.0582 (8)0.3006 (6)0.1012 (16)0.50
O51.2395 (7)0.1874 (9)0.2869 (8)0.1012 (16)0.50
O61.2906 (5)0.0465 (7)0.3833 (5)0.1012 (16)0.50
O4'1.1788 (14)0.0670 (13)0.3637 (8)0.187 (4)0.50
O5'1.2614 (15)0.1635 (11)0.2915 (11)0.187 (4)0.50
O6'1.2181 (13)0.0236 (10)0.2655 (8)0.187 (4)0.50
N10.5108 (3)0.0936 (3)0.24501 (19)0.0556 (8)
N20.6020 (2)0.3906 (3)0.49497 (17)0.0460 (7)
N30.8829 (3)0.3913 (4)0.5817 (2)0.0707 (11)
N41.0390 (3)0.1859 (5)0.3770 (2)0.0763 (12)
N50.7900 (3)0.5396 (4)0.7881 (2)0.0676 (10)
N60.6741 (3)0.8056 (3)0.99397 (19)0.0522 (8)
N71.2216 (8)0.0974 (7)0.3251 (6)0.0797 (19)0.50
N7'1.2207 (7)0.0713 (10)0.3065 (6)0.0797 (19)0.50
C10.5737 (3)0.1916 (4)0.2613 (2)0.0578 (10)
H10.59780.21980.21750.069*
C20.6052 (3)0.2537 (4)0.3395 (2)0.0553 (9)
H2A0.64910.32230.34750.066*
C30.5710 (3)0.2131 (4)0.4062 (2)0.0510 (9)
C40.5075 (4)0.1096 (4)0.3898 (2)0.0589 (10)
H40.48400.07830.43310.071*
C50.4786 (4)0.0526 (4)0.3098 (3)0.0627 (11)
H50.43540.01660.30010.075*
C60.5966 (3)0.2758 (4)0.4903 (2)0.0536 (9)
H60.60890.23050.54100.064*
C70.9441 (4)0.2916 (5)0.5886 (3)0.0783 (14)
H70.96330.24670.64010.094*
C80.9799 (4)0.2525 (5)0.5230 (3)0.0720 (13)
H81.02240.18300.53050.086*
C90.9516 (3)0.3179 (4)0.4458 (3)0.0614 (11)
C100.8877 (3)0.4200 (5)0.4382 (3)0.0651 (11)
H100.86700.46660.38740.078*
C110.8553 (4)0.4518 (5)0.5069 (3)0.0701 (13)
H110.81140.52000.50050.084*
C120.9898 (4)0.2858 (5)0.3741 (3)0.0706 (12)
H120.97810.33830.32700.085*
C130.7989 (4)0.4791 (5)0.8613 (3)0.0721 (13)
H130.82490.39970.86740.087*
C140.7717 (4)0.5284 (4)0.9274 (3)0.0623 (11)
H140.77950.48270.97720.075*
C150.7327 (3)0.6453 (4)0.9210 (2)0.0528 (9)
C160.7235 (3)0.7088 (4)0.8454 (2)0.0642 (11)
H160.69800.78850.83780.077*
C170.7525 (4)0.6524 (5)0.7817 (3)0.0730 (13)
H170.74540.69600.73110.088*
C180.7078 (3)0.6971 (4)0.9947 (2)0.0563 (10)
H180.71710.64891.04370.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0834 (3)0.1332 (5)0.0585 (2)0.0248 (2)0.0289 (2)0.0216 (2)
Ag20.0788 (3)0.0733 (3)0.03828 (19)0.01131 (17)0.02310 (17)0.01213 (14)
O10.0644 (15)0.0577 (17)0.0356 (13)0.0003 (13)0.0187 (12)0.0058 (12)
O20.111 (3)0.147 (4)0.067 (2)0.034 (3)0.046 (2)0.015 (2)
O30.0896 (19)0.066 (2)0.0418 (14)0.0126 (17)0.0320 (14)0.0045 (13)
O40.079 (3)0.101 (4)0.109 (3)0.025 (2)0.014 (3)0.034 (3)
O50.079 (3)0.101 (4)0.109 (3)0.025 (2)0.014 (3)0.034 (3)
O60.079 (3)0.101 (4)0.109 (3)0.025 (2)0.014 (3)0.034 (3)
O4'0.258 (10)0.189 (9)0.143 (6)0.063 (7)0.107 (7)0.017 (6)
O5'0.258 (10)0.189 (9)0.143 (6)0.063 (7)0.107 (7)0.017 (6)
O6'0.258 (10)0.189 (9)0.143 (6)0.063 (7)0.107 (7)0.017 (6)
N10.069 (2)0.062 (2)0.0371 (16)0.0044 (18)0.0200 (15)0.0061 (15)
N20.0533 (16)0.054 (2)0.0300 (14)0.0030 (15)0.0140 (13)0.0019 (13)
N30.064 (2)0.093 (3)0.054 (2)0.009 (2)0.0206 (18)0.014 (2)
N40.072 (2)0.105 (4)0.055 (2)0.009 (2)0.0257 (19)0.019 (2)
N50.071 (2)0.086 (3)0.047 (2)0.012 (2)0.0214 (18)0.0107 (19)
N60.0588 (18)0.061 (2)0.0401 (16)0.0009 (16)0.0212 (15)0.0022 (15)
N70.098 (3)0.102 (5)0.050 (4)0.016 (3)0.039 (3)0.003 (3)
N7'0.098 (3)0.102 (5)0.050 (4)0.016 (3)0.039 (3)0.003 (3)
C10.076 (3)0.061 (3)0.042 (2)0.006 (2)0.027 (2)0.0037 (18)
C20.068 (2)0.052 (2)0.046 (2)0.006 (2)0.0211 (19)0.0028 (18)
C30.065 (2)0.049 (2)0.0373 (17)0.0062 (19)0.0171 (17)0.0002 (16)
C40.082 (3)0.058 (3)0.042 (2)0.005 (2)0.027 (2)0.0007 (18)
C50.085 (3)0.058 (3)0.051 (2)0.014 (2)0.030 (2)0.009 (2)
C60.072 (2)0.053 (3)0.0359 (18)0.007 (2)0.0188 (18)0.0028 (17)
C70.083 (3)0.098 (4)0.053 (2)0.020 (3)0.023 (2)0.002 (3)
C80.068 (3)0.088 (4)0.059 (2)0.015 (2)0.022 (2)0.008 (3)
C90.048 (2)0.081 (3)0.055 (2)0.002 (2)0.0171 (19)0.012 (2)
C100.057 (2)0.083 (3)0.057 (2)0.007 (2)0.022 (2)0.003 (2)
C110.057 (2)0.078 (3)0.072 (3)0.010 (2)0.018 (2)0.014 (3)
C120.068 (3)0.088 (4)0.057 (3)0.008 (3)0.023 (2)0.007 (2)
C130.077 (3)0.068 (3)0.072 (3)0.011 (2)0.027 (3)0.011 (2)
C140.080 (3)0.060 (3)0.052 (2)0.003 (2)0.028 (2)0.004 (2)
C150.050 (2)0.062 (3)0.046 (2)0.0010 (18)0.0171 (17)0.0025 (19)
C160.074 (3)0.073 (3)0.046 (2)0.016 (2)0.021 (2)0.002 (2)
C170.085 (3)0.092 (4)0.043 (2)0.015 (3)0.023 (2)0.002 (2)
C180.069 (2)0.061 (3)0.042 (2)0.002 (2)0.0229 (19)0.0016 (18)
Geometric parameters (Å, º) top
Ag1—O12.612 (3)C1—H10.9300
Ag1—N32.151 (3)C2—C31.389 (5)
Ag1—N52.158 (3)C2—H2A0.9300
Ag2—O1i2.546 (2)C3—C41.382 (6)
Ag2—N12.161 (3)C3—C61.466 (5)
Ag2—N2ii2.183 (3)C4—C51.377 (5)
O1—N21.362 (3)C4—H40.9300
O1—Ag2iii2.546 (2)C5—H50.9300
O2—N41.387 (4)C6—H60.9300
O2—H20.8400C7—C81.381 (6)
O3—N61.378 (4)C7—H70.9300
O3—H30.8400C8—C91.383 (6)
O4—N71.270 (9)C8—H80.9300
O5—N71.234 (6)C9—C101.381 (6)
O6—N71.199 (11)C9—C121.469 (6)
O4'—N7'1.239 (7)C10—C111.377 (6)
O5'—N7'1.211 (8)C10—H100.9300
O6'—N7'1.234 (8)C11—H110.9300
N1—C11.327 (5)C12—H120.9300
N1—C51.346 (5)C13—C141.362 (6)
N2—C61.264 (5)C13—H130.9300
N2—Ag2iv2.183 (3)C14—C151.374 (6)
N3—C111.324 (6)C14—H140.9300
N3—C71.342 (6)C15—C161.386 (5)
N4—C121.267 (6)C15—C181.467 (5)
N5—C171.325 (6)C16—C171.374 (6)
N5—C131.337 (6)C16—H160.9300
N6—C181.271 (5)C17—H170.9300
C1—C21.378 (5)C18—H180.9300
N3—Ag1—N5167.71 (16)N1—C5—C4122.3 (4)
N3—Ag1—O191.45 (11)N1—C5—H5118.9
N5—Ag1—O196.21 (12)C4—C5—H5118.9
N1—Ag2—N2ii162.98 (12)N2—C6—C3121.0 (3)
N1—Ag2—O1i98.67 (10)N2—C6—H6119.5
N2ii—Ag2—O1i89.75 (9)C3—C6—H6119.5
N2—O1—Ag2iii114.36 (19)N3—C7—C8123.1 (5)
N2—O1—Ag1118.84 (18)N3—C7—H7118.5
Ag2iii—O1—Ag1125.99 (9)C8—C7—H7118.5
N4—O2—H2109.5C7—C8—C9119.2 (5)
N6—O3—H3109.5C7—C8—H8120.4
C1—N1—C5117.4 (3)C9—C8—H8120.4
C1—N1—Ag2119.0 (2)C10—C9—C8117.8 (4)
C5—N1—Ag2123.4 (3)C10—C9—C12119.4 (4)
C6—N2—O1116.5 (3)C8—C9—C12122.8 (4)
C6—N2—Ag2iv126.0 (3)C11—C10—C9119.0 (4)
O1—N2—Ag2iv115.8 (2)C11—C10—H10120.5
C11—N3—C7116.9 (4)C9—C10—H10120.5
C11—N3—Ag1120.0 (3)N3—C11—C10124.0 (4)
C7—N3—Ag1123.1 (3)N3—C11—H11118.0
C12—N4—O2110.8 (4)C10—C11—H11118.0
C17—N5—C13116.7 (4)N4—C12—C9119.4 (5)
C17—N5—Ag1122.7 (3)N4—C12—H12120.3
C13—N5—Ag1120.4 (3)C9—C12—H12120.3
C18—N6—O3111.4 (3)N5—C13—C14123.0 (5)
O6—N7—O5123.3 (8)N5—C13—H13118.5
O6—N7—O4119.3 (7)C14—C13—H13118.5
O5—N7—O4117.4 (9)C13—C14—C15120.4 (4)
O5'—N7'—O6'121.9 (8)C13—C14—H14119.8
O5'—N7'—O4'122.0 (9)C15—C14—H14119.8
O6'—N7'—O4'116.2 (8)C14—C15—C16117.0 (4)
N1—C1—C2123.6 (3)C14—C15—C18119.0 (4)
N1—C1—H1118.2C16—C15—C18124.0 (4)
C2—C1—H1118.2C17—C16—C15119.0 (4)
C1—C2—C3119.4 (4)C17—C16—H16120.5
C1—C2—H2A120.3C15—C16—H16120.5
C3—C2—H2A120.3N5—C17—C16123.9 (4)
C4—C3—C2117.0 (3)N5—C17—H17118.1
C4—C3—C6119.6 (3)C16—C17—H17118.1
C2—C3—C6123.4 (4)N6—C18—C15122.2 (4)
C5—C4—C3120.4 (3)N6—C18—H18118.9
C5—C4—H4119.8C15—C18—H18118.9
C3—C4—H4119.8
N3—Ag1—O1—N28.3 (3)O1—N2—C6—C3178.3 (3)
N5—Ag1—O1—N2178.7 (2)Ag2iv—N2—C6—C313.6 (5)
N3—Ag1—O1—Ag2iii177.47 (17)C4—C3—C6—N2143.2 (4)
N5—Ag1—O1—Ag2iii12.15 (17)C2—C3—C6—N235.2 (6)
N2ii—Ag2—N1—C1153.9 (4)C11—N3—C7—C81.2 (8)
O1i—Ag2—N1—C135.0 (3)Ag1—N3—C7—C8178.5 (4)
N2ii—Ag2—N1—C531.0 (6)N3—C7—C8—C90.3 (8)
O1i—Ag2—N1—C5149.9 (3)C7—C8—C9—C100.3 (7)
Ag2iii—O1—N2—C688.6 (3)C7—C8—C9—C12177.4 (5)
Ag1—O1—N2—C681.8 (3)C8—C9—C10—C110.0 (7)
Ag2iii—O1—N2—Ag2iv77.7 (2)C12—C9—C10—C11177.8 (4)
Ag1—O1—N2—Ag2iv111.96 (18)C7—N3—C11—C101.6 (7)
N5—Ag1—N3—C1173.7 (8)Ag1—N3—C11—C10179.0 (4)
O1—Ag1—N3—C1155.0 (4)C9—C10—C11—N31.1 (7)
N5—Ag1—N3—C7109.0 (8)O2—N4—C12—C9179.7 (4)
O1—Ag1—N3—C7122.3 (4)C10—C9—C12—N4172.9 (4)
N3—Ag1—N5—C1761.9 (9)C8—C9—C12—N49.5 (7)
O1—Ag1—N5—C1766.4 (4)C17—N5—C13—C140.1 (7)
N3—Ag1—N5—C13122.9 (7)Ag1—N5—C13—C14175.6 (4)
O1—Ag1—N5—C13108.8 (4)N5—C13—C14—C150.2 (8)
C5—N1—C1—C21.4 (6)C13—C14—C15—C160.4 (7)
Ag2—N1—C1—C2174.0 (3)C13—C14—C15—C18177.8 (4)
N1—C1—C2—C30.4 (7)C14—C15—C16—C170.5 (6)
C1—C2—C3—C41.0 (6)C18—C15—C16—C17177.8 (4)
C1—C2—C3—C6177.4 (4)C13—N5—C17—C160.2 (7)
C2—C3—C4—C51.4 (6)Ag1—N5—C17—C16175.6 (4)
C6—C3—C4—C5177.1 (4)C15—C16—C17—N50.4 (8)
C1—N1—C5—C40.9 (7)O3—N6—C18—C15177.3 (3)
Ag2—N1—C5—C4174.2 (3)C14—C15—C18—N6178.2 (4)
C3—C4—C5—N10.4 (7)C16—C15—C18—N61.0 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.841.812.642 (9)169
O2—H2···O40.842.212.997 (14)156
O3—H3···O1v0.841.692.527 (4)174
Symmetry code: (v) x, y+3/2, z+1/2.
Selected bond lengths (Å) top
Ag1—O12.612 (3)Ag2—O1i2.546 (2)
Ag1—N32.151 (3)Ag2—N12.161 (3)
Ag1—N52.158 (3)Ag2—N2ii2.183 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.841.812.642 (9)168.7
O2—H2···O4'0.842.212.997 (14)156.1
O3—H3···O1iii0.841.692.527 (4)174.1
Symmetry code: (iii) x, y+3/2, z+1/2.
Acknowledgements top

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, m???? (xu5647)

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.