supplementary materials


xu5650 scheme

Acta Cryst. (2012). E68, m1495    [ doi:10.1107/S1600536812046648 ]

(4,4'-Dimethyl-2,2'-bipyridine-[kappa]2N,N')(dimethylformamide-[kappa]O)diiodidocadmium

S. A. Shirvan, S. Haydari Dezfuli, F. Khazali and A. Borsalani

Abstract top

In the title compound, [CdI2(C12H12N2)(C3H7NO)], the CdII cation is five-coordinated in a distorted trigonal-bipyramidal configuration by two N atoms from a 4,4'-dimethyl-2,2'-bipyridine ligand, one O atom from a dimethylformamide ligand and two I- anions. [pi]-[pi] stacking between pyridine rings of adjacent molecules [centroid-centroid distance = 3.666 (3) and 3.709 (4) Å] stabilizes the three-dimensional structure

Comment top

Recently, we reported the synthes and crystal structure of [CdBr2(4,4'-dmbpy)(DMSO)] (Shirvan & Haydari Dezfuli, 2012) [where 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine and DMSO is dimethyl sulfoxide]. 4,4'-Dimethyl-2,2'-bipyridine is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), cadmium (Kalateh et al., 2010) and zinc (Alizadeh et al., 2010). Here, we report the synthesis and structure of the title compound.

In the title compound, (Fig. 1), the CdII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine, one O atom from one dimethylformamide and two I atoms. The Cd—N, Cd—I and Cd—O bond lengths and angles are collected in Table 1.

In the crystal structure, π-π contacts (Fig. 2) between the pyridine rings, Cg2—Cg2i and Cg2—Cg3ii [symmetry cods: (i) 1-X,-Y,-Z and (ii) 2-X,-Y,-Z, where Cg2 and Cg3 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] stabilize the structure, with centroid-centroid distance of 3.666 (3) and 3.709 (4) Å.

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Shirvan & Haydari Dezfuli (2012); Sofetis et al. (2006); Willett et al. (2001); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2'-bipyridine (0.15 g, 0.80 mmol) in methanol (10 ml) was added to a solution of CdI2, (0.29 g, 0.80 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in dimethylformamide. Suitable crystals were isolated after one week (yield; 0.37 g, 74.2%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93– 0.96 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule.
(4,4'-Dimethyl-2,2'-bipyridine-κ2N,N')(dimethylformamide- κO)diiodidocadmium top
Crystal data top
[CdI2(C12H12N2)(C3H7NO)]F(000) = 1168
Mr = 623.54Dx = 2.083 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12059 reflections
a = 8.6103 (6) Åθ = 2.4–26.0°
b = 15.1325 (8) ŵ = 4.21 mm1
c = 15.4263 (10) ÅT = 298 K
β = 98.347 (5)°Prism, colorless
V = 1988.7 (2) Å30.45 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3907 independent reflections
Radiation source: fine-focus sealed tube2859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 109
Tmin = 0.188, Tmax = 0.223k = 1817
12059 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
3907 reflections(Δ/σ)max = 0.007
199 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
[CdI2(C12H12N2)(C3H7NO)]V = 1988.7 (2) Å3
Mr = 623.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6103 (6) ŵ = 4.21 mm1
b = 15.1325 (8) ÅT = 298 K
c = 15.4263 (10) Å0.45 × 0.40 × 0.35 mm
β = 98.347 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3907 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2859 reflections with I > 2σ(I)
Tmin = 0.188, Tmax = 0.223Rint = 0.052
12059 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.85 e Å3
S = 0.98Δρmin = 1.08 e Å3
3907 reflectionsAbsolute structure: ?
199 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8789 (8)0.0736 (4)0.0980 (3)0.0488 (15)
H10.92750.09650.15100.059*
C20.9026 (7)0.1170 (4)0.0221 (4)0.0477 (15)
H20.96640.16680.02420.057*
C30.8286 (7)0.0843 (4)0.0571 (3)0.0444 (14)
C40.8494 (9)0.1285 (5)0.1415 (4)0.0619 (19)
H4A0.89810.08810.17740.074*
H4B0.74880.14600.17190.074*
H4C0.91470.17970.12950.074*
C50.7387 (7)0.0090 (4)0.0555 (3)0.0404 (14)
H50.69010.01490.10800.049*
C60.7189 (7)0.0318 (4)0.0225 (3)0.0353 (12)
C70.6243 (6)0.1118 (4)0.0260 (3)0.0346 (12)
C80.5479 (7)0.1536 (4)0.0481 (3)0.0412 (14)
H80.55600.13050.10310.049*
C90.4610 (8)0.2282 (4)0.0416 (4)0.0500 (16)
C100.3786 (10)0.2740 (5)0.1238 (4)0.070 (2)
H10A0.30510.23400.15590.083*
H10B0.45500.29170.16000.083*
H10C0.32380.32520.10740.083*
C110.4523 (8)0.2614 (5)0.0406 (4)0.0552 (17)
H110.39360.31180.04770.066*
C120.5324 (8)0.2183 (5)0.1124 (4)0.0546 (17)
H120.52790.24170.16770.066*
C131.0539 (9)0.0020 (5)0.3557 (4)0.0620 (19)
H131.08290.05700.36350.074*
C141.0840 (14)0.1519 (7)0.4055 (6)0.116 (4)
H14A1.10700.17410.35040.140*
H14B0.97430.15970.40870.140*
H14C1.14500.18360.45250.140*
C151.2436 (9)0.0323 (6)0.4837 (4)0.077 (3)
H15A1.20160.01110.51930.092*
H15B1.33080.00740.45970.092*
H15C1.27820.08280.51880.092*
N10.7921 (6)0.0018 (3)0.1005 (3)0.0413 (12)
N20.6153 (6)0.1455 (3)0.1065 (3)0.0408 (12)
N31.1228 (6)0.0590 (4)0.4127 (3)0.0526 (14)
O10.9541 (6)0.0201 (4)0.2930 (3)0.0708 (15)
Cd10.74180 (5)0.06619 (3)0.22889 (2)0.04265 (13)
I10.51473 (6)0.03208 (3)0.29304 (2)0.05923 (15)
I20.84760 (6)0.21673 (3)0.32035 (3)0.06213 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (4)0.042 (4)0.035 (3)0.010 (3)0.003 (3)0.003 (2)
C20.051 (4)0.045 (4)0.047 (3)0.010 (3)0.006 (3)0.002 (3)
C30.046 (3)0.047 (4)0.041 (3)0.004 (3)0.008 (2)0.006 (2)
C40.082 (5)0.059 (5)0.047 (3)0.011 (4)0.016 (3)0.012 (3)
C50.049 (4)0.046 (4)0.025 (2)0.001 (3)0.004 (2)0.001 (2)
C60.038 (3)0.039 (3)0.028 (2)0.006 (3)0.001 (2)0.001 (2)
C70.040 (3)0.034 (3)0.029 (2)0.002 (3)0.001 (2)0.001 (2)
C80.052 (4)0.043 (4)0.026 (2)0.004 (3)0.000 (2)0.002 (2)
C90.062 (4)0.047 (4)0.038 (3)0.002 (3)0.003 (3)0.007 (2)
C100.090 (6)0.066 (5)0.050 (3)0.028 (4)0.000 (3)0.015 (3)
C110.063 (4)0.044 (4)0.057 (4)0.015 (3)0.000 (3)0.001 (3)
C120.069 (5)0.052 (4)0.043 (3)0.008 (4)0.007 (3)0.009 (3)
C130.063 (5)0.062 (5)0.057 (4)0.001 (4)0.004 (3)0.011 (3)
C140.162 (11)0.083 (7)0.085 (6)0.012 (7)0.044 (7)0.003 (5)
C150.067 (5)0.115 (7)0.042 (3)0.008 (5)0.012 (3)0.009 (4)
N10.048 (3)0.044 (3)0.029 (2)0.001 (2)0.0041 (19)0.0007 (19)
N20.047 (3)0.044 (3)0.031 (2)0.000 (2)0.0004 (19)0.0054 (19)
N30.058 (3)0.067 (4)0.029 (2)0.004 (3)0.003 (2)0.000 (2)
O10.077 (4)0.077 (4)0.048 (2)0.011 (3)0.025 (2)0.007 (2)
Cd10.0527 (3)0.0474 (3)0.02556 (18)0.0051 (2)0.00212 (15)0.00121 (16)
I10.0755 (3)0.0669 (3)0.03425 (19)0.0214 (2)0.00443 (18)0.00662 (17)
I20.0806 (3)0.0571 (3)0.0446 (2)0.0157 (2)0.0047 (2)0.01291 (18)
Geometric parameters (Å, º) top
C1—N11.322 (8)C10—H10C0.9600
C1—C21.383 (8)C11—C121.380 (8)
C1—H10.9300C11—H110.9300
C2—C31.385 (8)C12—N21.323 (8)
C2—H20.9300C12—H120.9300
C3—C51.379 (9)C13—O11.229 (8)
C3—C41.498 (8)C13—N31.310 (8)
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C14—N31.445 (11)
C4—H4C0.9600C14—H14A0.9600
C5—C61.384 (7)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—N11.373 (6)C15—N31.454 (8)
C6—C71.464 (8)C15—H15A0.9600
C7—N21.355 (6)C15—H15B0.9600
C7—C81.386 (7)C15—H15C0.9600
C8—C91.367 (9)Cd1—N12.327 (4)
C8—H80.9300Cd1—N22.365 (4)
C9—C111.377 (9)Cd1—O12.345 (5)
C9—C101.527 (8)Cd1—I12.7523 (7)
C10—H10A0.9600Cd1—I22.7635 (6)
C10—H10B0.9600
N1—C1—C2124.6 (5)N2—C12—C11123.4 (5)
N1—C1—H1117.7N2—C12—H12118.3
C2—C1—H1117.7C11—C12—H12118.3
C1—C2—C3118.1 (6)O1—C13—N3125.3 (7)
C1—C2—H2120.9O1—C13—H13117.3
C3—C2—H2120.9N3—C13—H13117.3
C5—C3—C2117.8 (5)N3—C14—H14A109.5
C5—C3—C4121.6 (5)N3—C14—H14B109.5
C2—C3—C4120.6 (6)H14A—C14—H14B109.5
C3—C4—H4A109.5N3—C14—H14C109.5
C3—C4—H4B109.5H14A—C14—H14C109.5
H4A—C4—H4B109.5H14B—C14—H14C109.5
C3—C4—H4C109.5N3—C15—H15A109.5
H4A—C4—H4C109.5N3—C15—H15B109.5
H4B—C4—H4C109.5H15A—C15—H15B109.5
C3—C5—C6121.7 (5)N3—C15—H15C109.5
C3—C5—H5119.2H15A—C15—H15C109.5
C6—C5—H5119.2H15B—C15—H15C109.5
N1—C6—C5119.9 (5)C1—N1—C6117.9 (5)
N1—C6—C7117.4 (4)C1—N1—Cd1124.4 (3)
C5—C6—C7122.7 (5)C6—N1—Cd1117.6 (4)
N2—C7—C8120.0 (5)C12—N2—C7118.7 (5)
N2—C7—C6116.8 (4)C12—N2—Cd1123.9 (4)
C8—C7—C6123.1 (5)C7—N2—Cd1117.4 (4)
C9—C8—C7121.1 (5)C13—N3—C14120.8 (6)
C9—C8—H8119.5C13—N3—C15121.7 (7)
C7—C8—H8119.5C14—N3—C15117.4 (6)
C8—C9—C11118.2 (5)C13—O1—Cd1128.4 (5)
C8—C9—C10120.5 (5)N1—Cd1—O183.23 (16)
C11—C9—C10121.3 (6)N1—Cd1—N270.51 (16)
C9—C10—H10A109.5O1—Cd1—N2149.27 (18)
C9—C10—H10B109.5N1—Cd1—I1107.25 (13)
H10A—C10—H10B109.5O1—Cd1—I195.65 (14)
C9—C10—H10C109.5N2—Cd1—I1106.98 (12)
H10A—C10—H10C109.5N1—Cd1—I2135.29 (13)
H10B—C10—H10C109.5O1—Cd1—I293.72 (12)
C9—C11—C12118.7 (6)N2—Cd1—I293.95 (12)
C9—C11—H11120.7I1—Cd1—I2117.42 (2)
C12—C11—H11120.7
N1—C1—C2—C31.1 (11)C6—C7—N2—C12179.2 (6)
C1—C2—C3—C51.5 (9)C8—C7—N2—Cd1177.8 (4)
C1—C2—C3—C4179.9 (6)C6—C7—N2—Cd13.2 (6)
C2—C3—C5—C61.6 (9)O1—C13—N3—C140.2 (13)
C4—C3—C5—C6179.8 (6)O1—C13—N3—C15178.0 (7)
C3—C5—C6—N11.1 (9)N3—C13—O1—Cd1147.5 (6)
C3—C5—C6—C7179.9 (6)C1—N1—Cd1—O116.0 (5)
N1—C6—C7—N20.8 (8)C6—N1—Cd1—O1168.1 (4)
C5—C6—C7—N2179.6 (5)C1—N1—Cd1—N2179.8 (6)
N1—C6—C7—C8178.2 (5)C6—N1—Cd1—N24.4 (4)
C5—C6—C7—C80.6 (9)C1—N1—Cd1—I177.8 (5)
N2—C7—C8—C90.9 (9)C6—N1—Cd1—I198.0 (4)
C6—C7—C8—C9179.9 (6)C1—N1—Cd1—I2104.5 (5)
C7—C8—C9—C110.6 (10)C6—N1—Cd1—I279.7 (4)
C7—C8—C9—C10179.5 (6)C13—O1—Cd1—N1146.2 (7)
C8—C9—C11—C120.5 (11)C13—O1—Cd1—N2115.2 (6)
C10—C9—C11—C12178.4 (7)C13—O1—Cd1—I1107.0 (6)
C9—C11—C12—N21.3 (11)C13—O1—Cd1—I211.0 (6)
C2—C1—N1—C60.6 (10)C12—N2—Cd1—N1178.6 (6)
C2—C1—N1—Cd1176.4 (5)C7—N2—Cd1—N14.0 (4)
C5—C6—N1—C10.6 (8)C12—N2—Cd1—O1145.7 (5)
C7—C6—N1—C1179.4 (6)C7—N2—Cd1—O136.9 (6)
C5—C6—N1—Cd1176.7 (4)C12—N2—Cd1—I178.7 (5)
C7—C6—N1—Cd14.5 (6)C7—N2—Cd1—I198.8 (4)
C11—C12—N2—C70.9 (10)C12—N2—Cd1—I241.6 (5)
C11—C12—N2—Cd1176.5 (5)C7—N2—Cd1—I2140.9 (4)
C8—C7—N2—C120.2 (9)
Selected bond lengths (Å) top
Cd1—N12.327 (4)Cd1—I12.7523 (7)
Cd1—N22.365 (4)Cd1—I22.7635 (6)
Cd1—O12.345 (5)
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

references
References top

Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.

Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.

Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.

Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.

Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.

Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1006–m1007.

Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.

Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.

Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.