organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3438-o3439

2-Oxo-2H-chromen-4-yl 4-meth­­oxy­benzoate

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Bio-organique et de Phytochimie, Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso, and cLaboratoire de Physique des Interactions Ioniques et Moléculaires, Equipe-Spectrométries et Dynamique Moléculaire, Centre Saint Jérôme, Université de Provence, 13397 Marseille, France
*Correspondence e-mail: abou_akoun@yahoo.fr

(Received 8 November 2012; accepted 20 November 2012; online 24 November 2012)

In the title mol­ecule, C17H12O5, the chromen-2-one ring and the 4-meth­oxy­benzoate side chain are inclined to one another at a dihedral angle of 69.82 (9)°. The crystal structure features parallel sheets of centrosymmetric R22(6) dimers joined by a C(7) chain, resulting in centrosymetric tetra­mers of hydrogen-bonded mol­ecules with graph-set motif R44(40). These centrosymetric tetra­mers are connected by a pair of hydrogen bonds described by an R22(8) ring motif and a C(7) chain via C—H⋯O inter­actions. In the structure, there are also ππ stacking inter­actions between chromene benzene and the six-membered heterocyclic rings [centroid–centroid distance = 3.691 (2) Å] and weak C=O⋯π inter­actions [O⋯(ring centroid) distance = 3.357 (3) Å].

Related literature

For the biological activity of coumarin derivatives, see: Basanagouda et al. (2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]); Vukovic et al. (2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]); Emmanuel-Giota et al. (2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717-722.]); Marchenko et al. (2006[Marchenko, M. M., Kopyl'chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296-297.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ππ stacking inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O5

  • Mr = 296.27

  • Triclinic, [P \overline 1]

  • a = 4.371 (1) Å

  • b = 10.535 (4) Å

  • c = 15.193 (2) Å

  • α = 85.218 (3)°

  • β = 83.688 (2)°

  • γ = 81.893 (1)°

  • V = 686.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.25 × 0.15 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5683 measured reflections

  • 2731 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.163

  • S = 1.11

  • 2731 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.48 3.407 (4) 173
C2—H2⋯O4ii 0.93 2.49 3.340 (4) 151
C17—H17B⋯O5iii 0.96 2.59 3.461 (4) 151
Symmetry codes: (i) -x-1, -y, -z+1; (ii) x+1, y, z; (iii) -x+2, -y-1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Coumarin constitutes one of the major classes of naturally occurring compounds and interest in its chemistry continues unabated because of its usefulness as a biologically active agent. It also represents the core structure of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009), anti-oxidant (Vukovic et al., 2010), anti-inflammatory (Emmanuel-Giota et al., 2001) and anti-tumour agents (Marchenko, et al., 2006). Therefore, the synthesis of new coumarin derivatives is of considerable interest. In order to study the influence of new substituents on the activity of the coumarin derivatives, the title compound, the ester C17H12O5 has been synthesized and its molecular and crystal structure is reported herein.

In the title compound (Fig. 1), the side chain is tilted with respect to the chromen-2-one ring with torsion angles C1—C9—O3—C10 = -76.3 (4)° and C8—C9—O3—C10 = 107.7 (3)°. The dihedral angle between the chromene ring and the side chain is 69.82 (9) °.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) generate hydrogen-bonding motifs ranging from a chain to various rings. Indeed, in the methoxy group, an H atom of the methyl group (H17B) bonds to the oxygen atom of the same group on a neighbouring molecule (related by an inversion center) to form parallel sheets of centrosymetric dimers [graph set R22(6) (Bernstein et al., 1995)]. Also, a hydrogen of the chromene-benzene ring (H2) bonds to the oxygen atom of the carbonyl group of the side chain of a neighbouring molecule to form an infinite chain [graph set C(7)]. The combination of the C(7) chain and the R22(6) dimers results in a ring of hydrogen-bonded molecules described by the graph set R44(40) (Fig. 2). Further, the hydrogen of the six-membered heterocyclic ring bonds to the oxygen atom of the carbonyl group of the chromen-2-one moiety of an inversion-related neighbouring molecule to form a pair of hydrogen bonds [graph set R22(8)]. The latter hydrogen bonds and the C(7) chain connect the R44(40) centrosymmetric tetramers, resulting in a supramolecular aggregation (Fig. 3) which is further consolidated by weak C O···π interactions [O2···Cg1 (x - 1, y, z) = 3.357 (3) Å], where Cg1 is the centroid of the six-membered O containing ring, and ππ stacking between the chromene-benzene C1—C6 and the six-membered heterocyclic rings; in the latter, the centroid···centroid distance, [Cg2···Cg1 (x + 1, y, z) or Cg1···Cg2 (x - 1, y, z) = 3.691 (2) Å], is less than 3.8 Å, the maximum regarded as relevant for ππ interactions (Janiak, 2000) (Fig. 4).

Related literature top

For the biological activity of coumarin derivatives, see: Basanagouda et al. (2009); Vukovic et al. (2010); Emmanuel-Giota et al. (2001); Marchenko et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ππ stacking interactions, see: Janiak (2000).

Experimental top

To a solution of 4-methoxybenzoyl chloride (40 mmol) in dried tetrahydrofuran (150 ml), was added dried triethylamine (120 mmol) and 4-hydroxycoumarin (40 mmol)in small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized from chloroform. Colourless crystals of the title compound were obtained in a good yield (84%); m.p. 421–422 K. 1H NMR (Bruker TOPSPIN, CDCl3, 400 MHz, p.p.m.) δ: 6.63 (s, 1H, H8); 7.43 (d, 1H, H2); 7.33 (t.d, 1H, H3); 7.61 (t.d,1H, H4); 7.73 (d, 1H, H5); 8.2 (d, 2H, H12 and H16); 7.05 (d, 2H, H13 and H15); 3.93 (s, 3H, CH3). 13C NMR (Bruker TOPSPIN, CDCl3, 100 MHz, p.p.m.) δ: 162 (C7); 108 (C8); 161 (C9); 127 (C2); 124 (C3); 117 (C4); 126 (C5); 153 (C6); 115 (C1); 165 (C10); 160 (C11); 133 (C12 and C16); 113 (C13 and C15); 120 (C14); 55 (C17).

Refinement top

H atoms were placed in calculated positions [C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyl) times Ueq of the respective parent atom. The five reflections (1 - 5 17), (0 - 1 1), (0 0 1), (0 1 0), (1 0 1) were found to have too low intensities, caused by a systematic error, probably by shielding by the beam stop interference. They were omitted from the refinement.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed down the c axis, showing parallel sheets of centrosymmetric R22(6) dimers linked by an infinite C(7) chain to form a centrosymetric R44(40) tetramers. The dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing, viewed down the c axis, showing the supramolecular aggregation formed by the propagation of the centrosymetric R44(40) tetramers via C—H···O hydrogen bonds. The dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 4] Fig. 4. A view of the crystal packing, showing CO···π and ππ stacking interactions (dashed lines). The green dots are centroids of rings. H atoms have been omitted.
2-Oxo-2H-chromen-4-yl 4-methoxybenzoate top
Crystal data top
C17H12O5Z = 2
Mr = 296.27F(000) = 308
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Melting point = 421–422 K
a = 4.371 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.535 (4) ÅCell parameters from 5683 reflections
c = 15.193 (2) Åθ = 2.3–27.0°
α = 85.218 (3)°µ = 0.11 mm1
β = 83.688 (2)°T = 298 K
γ = 81.893 (1)°Prism, colourless
V = 686.8 (3) Å30.25 × 0.15 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
1540 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
ϕ and ω scansh = 05
5683 measured reflectionsk = 1213
2731 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.5861P]
where P = (Fo2 + 2Fc2)/3
2731 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
48 constraints
Crystal data top
C17H12O5γ = 81.893 (1)°
Mr = 296.27V = 686.8 (3) Å3
Triclinic, P1Z = 2
a = 4.371 (1) ÅMo Kα radiation
b = 10.535 (4) ŵ = 0.11 mm1
c = 15.193 (2) ÅT = 298 K
α = 85.218 (3)°0.25 × 0.15 × 0.04 mm
β = 83.688 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1540 reflections with I > 2σ(I)
5683 measured reflectionsRint = 0.055
2731 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.11Δρmax = 0.17 e Å3
2731 reflectionsΔρmin = 0.23 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.1598 (5)0.05340 (19)0.31179 (13)0.0542 (6)
O10.3230 (5)0.3325 (2)0.47003 (14)0.0528 (6)
O20.5808 (6)0.1879 (2)0.54685 (17)0.0722 (7)
C110.2683 (7)0.0573 (3)0.1811 (2)0.0447 (7)
O40.1068 (6)0.1288 (2)0.19569 (15)0.0656 (7)
O50.7433 (6)0.3598 (2)0.04518 (16)0.0702 (7)
C50.0670 (8)0.4966 (3)0.3926 (2)0.0525 (8)
H50.18390.55520.42970.063*
C90.0098 (7)0.1490 (3)0.3629 (2)0.0459 (8)
C10.0601 (7)0.2784 (3)0.3473 (2)0.0443 (7)
C60.1068 (7)0.3679 (3)0.4027 (2)0.0455 (8)
C140.5790 (7)0.2567 (3)0.0861 (2)0.0512 (8)
C100.0876 (8)0.0505 (3)0.2267 (2)0.0500 (8)
C40.1473 (8)0.5360 (3)0.3273 (2)0.0586 (9)
H40.17580.62220.31990.070*
C70.3849 (8)0.2081 (3)0.4861 (2)0.0532 (8)
C120.4725 (7)0.1501 (3)0.2215 (2)0.0510 (8)
H120.50540.14550.28050.061*
C150.3792 (8)0.1649 (3)0.0454 (2)0.0612 (10)
H150.34680.16910.01380.073*
C80.2172 (8)0.1147 (3)0.4278 (2)0.0520 (8)
H80.25500.02960.43590.062*
C130.6278 (8)0.2498 (3)0.1738 (2)0.0565 (9)
H130.76560.31250.20080.068*
C160.2264 (8)0.0658 (3)0.0939 (2)0.0618 (10)
H160.09050.00270.06650.074*
C30.3223 (8)0.4490 (3)0.2719 (2)0.0585 (9)
H30.46920.47680.22830.070*
C20.2795 (7)0.3217 (3)0.2813 (2)0.0525 (8)
H20.39650.26390.24370.063*
C170.7156 (10)0.3667 (4)0.0473 (2)0.0784 (12)
H17A0.50230.36920.05600.118*
H17B0.84010.44290.06800.118*
H17C0.78590.29240.08000.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0695 (15)0.0459 (12)0.0453 (13)0.0091 (10)0.0096 (11)0.0155 (10)
O10.0634 (14)0.0459 (13)0.0478 (13)0.0031 (10)0.0020 (11)0.0138 (10)
O20.0892 (19)0.0661 (16)0.0575 (16)0.0115 (13)0.0144 (14)0.0096 (12)
C110.0515 (19)0.0393 (17)0.0429 (18)0.0017 (13)0.0024 (14)0.0103 (14)
O40.0724 (16)0.0624 (15)0.0601 (15)0.0189 (12)0.0207 (13)0.0215 (12)
O50.0938 (19)0.0529 (14)0.0594 (16)0.0174 (13)0.0090 (13)0.0219 (12)
C50.060 (2)0.0451 (19)0.054 (2)0.0007 (15)0.0131 (17)0.0166 (15)
C90.057 (2)0.0391 (17)0.0418 (18)0.0060 (14)0.0117 (16)0.0130 (14)
C10.0482 (18)0.0443 (18)0.0404 (17)0.0026 (14)0.0096 (14)0.0106 (14)
C60.0508 (19)0.0458 (18)0.0407 (18)0.0030 (14)0.0080 (15)0.0095 (14)
C140.060 (2)0.0394 (17)0.053 (2)0.0007 (15)0.0023 (16)0.0139 (15)
C100.055 (2)0.0488 (19)0.047 (2)0.0023 (16)0.0085 (16)0.0116 (15)
C40.070 (2)0.047 (2)0.061 (2)0.0107 (17)0.0139 (19)0.0028 (17)
C70.065 (2)0.049 (2)0.045 (2)0.0026 (16)0.0074 (17)0.0086 (15)
C120.063 (2)0.0443 (18)0.0452 (19)0.0020 (15)0.0084 (16)0.0076 (15)
C150.077 (2)0.059 (2)0.047 (2)0.0108 (18)0.0159 (18)0.0186 (17)
C80.066 (2)0.0430 (18)0.0464 (19)0.0012 (15)0.0070 (17)0.0073 (15)
C130.071 (2)0.0420 (18)0.053 (2)0.0105 (16)0.0108 (17)0.0073 (16)
C160.078 (2)0.054 (2)0.051 (2)0.0165 (17)0.0171 (18)0.0157 (17)
C30.065 (2)0.062 (2)0.051 (2)0.0137 (17)0.0056 (17)0.0051 (17)
C20.056 (2)0.057 (2)0.0447 (19)0.0012 (16)0.0072 (16)0.0129 (15)
C170.103 (3)0.071 (3)0.057 (2)0.015 (2)0.006 (2)0.029 (2)
Geometric parameters (Å, º) top
O3—C101.368 (4)C14—C151.365 (4)
O3—C91.400 (3)C14—C131.381 (4)
O1—C71.373 (4)C4—C31.387 (5)
O1—C61.379 (4)C4—H40.9300
O2—C71.214 (4)C7—C81.445 (4)
C11—C161.369 (4)C12—C131.381 (4)
C11—C121.380 (4)C12—H120.9300
C11—C101.467 (4)C15—C161.379 (4)
O4—C101.204 (4)C15—H150.9300
O5—C141.370 (3)C8—H80.9300
O5—C171.433 (4)C13—H130.9300
C5—C41.368 (4)C16—H160.9300
C5—C61.385 (4)C3—C21.373 (4)
C5—H50.9300C3—H30.9300
C9—C81.327 (4)C2—H20.9300
C9—C11.434 (4)C17—H17A0.9600
C1—C61.391 (4)C17—H17B0.9600
C1—C21.403 (4)C17—H17C0.9600
C10—O3—C9117.2 (2)O1—C7—C8116.9 (3)
C7—O1—C6122.2 (2)C11—C12—C13119.6 (3)
C16—C11—C12119.0 (3)C11—C12—H12120.2
C16—C11—C10117.4 (3)C13—C12—H12120.2
C12—C11—C10123.6 (3)C14—C15—C16118.4 (3)
C14—O5—C17117.5 (3)C14—C15—H15120.8
C4—C5—C6118.9 (3)C16—C15—H15120.8
C4—C5—H5120.6C9—C8—C7120.8 (3)
C6—C5—H5120.6C9—C8—H8119.6
C8—C9—O3118.5 (3)C7—C8—H8119.6
C8—C9—C1122.3 (3)C12—C13—C14120.2 (3)
O3—C9—C1119.1 (3)C12—C13—H13119.9
C6—C1—C2117.9 (3)C14—C13—H13119.9
C6—C1—C9116.4 (3)C11—C16—C15122.1 (3)
C2—C1—C9125.7 (3)C11—C16—H16118.9
O1—C6—C5116.8 (3)C15—C16—H16118.9
O1—C6—C1121.3 (3)C2—C3—C4120.2 (3)
C5—C6—C1121.9 (3)C2—C3—H3119.9
C15—C14—O5123.9 (3)C4—C3—H3119.9
C15—C14—C13120.6 (3)C3—C2—C1120.4 (3)
O5—C14—C13115.5 (3)C3—C2—H2119.8
O4—C10—O3121.8 (3)C1—C2—H2119.8
O4—C10—C11125.8 (3)O5—C17—H17A109.5
O3—C10—C11112.4 (3)O5—C17—H17B109.5
C5—C4—C3120.8 (3)H17A—C17—H17B109.5
C5—C4—H4119.6O5—C17—H17C109.5
C3—C4—H4119.6H17A—C17—H17C109.5
O2—C7—O1116.6 (3)H17B—C17—H17C109.5
O2—C7—C8126.4 (3)
C10—O3—C9—C8107.7 (3)C6—C5—C4—C30.0 (5)
C10—O3—C9—C176.3 (4)C6—O1—C7—O2179.7 (3)
C8—C9—C1—C61.4 (4)C6—O1—C7—C81.3 (4)
O3—C9—C1—C6177.3 (3)C16—C11—C12—C130.6 (5)
C8—C9—C1—C2178.8 (3)C10—C11—C12—C13178.6 (3)
O3—C9—C1—C22.9 (5)O5—C14—C15—C16179.8 (3)
C7—O1—C6—C5179.5 (3)C13—C14—C15—C160.3 (5)
C7—O1—C6—C10.1 (4)O3—C9—C8—C7176.2 (3)
C4—C5—C6—O1179.4 (3)C1—C9—C8—C70.3 (5)
C4—C5—C6—C11.3 (5)O2—C7—C8—C9179.3 (3)
C2—C1—C6—O1179.0 (3)O1—C7—C8—C91.1 (5)
C9—C1—C6—O11.2 (4)C11—C12—C13—C140.0 (5)
C2—C1—C6—C51.7 (4)C15—C14—C13—C120.5 (5)
C9—C1—C6—C5178.1 (3)O5—C14—C13—C12179.7 (3)
C17—O5—C14—C153.8 (5)C12—C11—C16—C150.7 (5)
C17—O5—C14—C13176.1 (3)C10—C11—C16—C15178.5 (3)
C9—O3—C10—O42.2 (5)C14—C15—C16—C110.3 (6)
C9—O3—C10—C11177.0 (3)C5—C4—C3—C20.9 (5)
C16—C11—C10—O44.1 (5)C4—C3—C2—C10.5 (5)
C12—C11—C10—O4175.1 (3)C6—C1—C2—C30.8 (5)
C16—C11—C10—O3176.7 (3)C9—C1—C2—C3179.0 (3)
C12—C11—C10—O34.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.483.407 (4)173
C2—H2···O4ii0.932.493.340 (4)151
C17—H17B···O5iii0.962.593.461 (4)151
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z; (iii) x+2, y1, z.

Experimental details

Crystal data
Chemical formulaC17H12O5
Mr296.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.371 (1), 10.535 (4), 15.193 (2)
α, β, γ (°)85.218 (3), 83.688 (2), 81.893 (1)
V3)686.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.15 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5683, 2731, 1540
Rint0.055
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.163, 1.11
No. of reflections2731
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.483.407 (4)173.3
C2—H2···O4ii0.932.493.340 (4)151.2
C17—H17B···O5iii0.962.593.461 (4)151.0
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z; (iii) x+2, y1, z.
 

Acknowledgements

The authors thank the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of the diffractometer and the NMR spectrometer.

References

First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  CSD CrossRef CAS
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722.  CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef
First citationMarchenko, M. M., Kopyl'chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296–297.  CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3438-o3439
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds