supplementary materials


hg5282 scheme

Acta Cryst. (2013). E69, m133    [ doi:10.1107/S160053681300281X ]

The non-centrosymmetric polymorph of (quinolin-8-ol-[kappa]2N,O)(quinolin-8-olato-[kappa]2N,O)silver(I)

Z.-B. Jia, Y. Zhao, Q.-J. Wen and A.-Q. Ma

Abstract top

The title compound, [Ag(C9H6NO)(C9H7NO)], crystallizes as a non-centrosymmetric polymorph. The structure was previously reported by Wu et al. [(2006). Acta Cryst. E62, m281-m282] in the centrosymmetric space group Pbcn. The AgI ion displays a distorted tetrahedral coordination geometry defined by two N and two O atoms from a neutral quinolin-8-ol ligand (HQ) and a deprotonated quinolin-8-olate anion (Q-). The dihedral angle between the two ligands is 47.0 (1)°. Strong O-H...O hydrogen bonds link the molecules into a supramolecular chain along the a-axis direction.

Comment top

In the title compound,(I), the Ag ion is four-coordinated by two nitrogen atoms and two oxygen atoms from two 8-hydroxyquinoline ligands, forming a distorted tetrahedral geometry (Fig. 1). The two 8-hydroxyquinoline ligands are different in their mode of the coordination. One is a neutral ligand while the other is deprotonated. The dihedral angle between two 8-hydroxyquinoline mean planes is 47.0 (1)°. A polymorph (II) of the structure has been previously reported by Wu et al. (2006) in the centrosymmetric space group Pbcn with a = 11.434 (2)Å, b = 14.817 (3)Å, c = 8.7828 (18)Å. The Ag-N bondlengths of 2.174 (3), 2.176 (3)Å in (I) are shorter than the value of 2.2377 (19)Å for (II) while the Ag-O bondlengths of 2.596 (2), 2.649 (2)Å are longer than the value of 2.4831 (17)Å found for (II). Inter-molecular O_H···O hydrogen bonding between HQ and Q- ligands form a supramolecular chain structure (Table 1, Fig. 2). Weak π-π interactions are observed between neighboring aromatic rings [dihedral angle 2.0 (2)°] with the centroid-to-centroid distance of 3.75 (1) Å, which is favorable to increase the stability of the structure (Fig. 3).

Related literature top

For the centrosymmetric polymorph, see: Wu et al. (2006).

Experimental top

A methanol solution (15 ml) of 8-hydroxyquinoline(HQ) (0.075 g,0.5 mmol) was mixed with an aqueous solution (5 ml) of AgNO3 (0.085 g, 0.5 mmol). Ammonia solution was dropped into the mixture under stirring until it was almost clear. Then it was filtered. Yellow single crystals, suitable for X-ray, were obtained after several days.

Refinement top

The H atoms on C atoms and O atom were placed in idealized positions and refined as riding atoms with C—H = 0.93 Å and O—H = 0.84 (2) Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I).
[Figure 2] Fig. 2. View of the hydrogen-bonding chain of (1). Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. View of the packing. H atoms have been omitted for clarity.
(Quinolin-8-ol-κ2N,O)(quinolin-8-olato-κ2N,O)silver(I) top
Crystal data top
[Ag(C9H6NO)(C9H7NO)]F(000) = 792
Mr = 397.17Dx = 1.837 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3403 reflections
a = 7.2320 (3) Åθ = 2.8–29.6°
b = 10.4857 (6) ŵ = 1.42 mm1
c = 18.9398 (10) ÅT = 293 K
V = 1436.25 (13) Å3Block, yellow
Z = 40.19 × 0.18 × 0.15 mm
Data collection top
Bruker SMART
diffractometer
2554 independent reflections
Radiation source: Enhance (Mo) X-ray Source2305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.3592 pixels mm-1θmax = 25.1°, θmin = 2.9°
ω scansh = 87
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 912
Tmin = 0.884, Tmax = 1.000l = 2221
8103 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.022P)2 + 0.3181P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2554 reflectionsΔρmax = 0.41 e Å3
208 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 1056 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (3)
Crystal data top
[Ag(C9H6NO)(C9H7NO)]V = 1436.25 (13) Å3
Mr = 397.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2320 (3) ŵ = 1.42 mm1
b = 10.4857 (6) ÅT = 293 K
c = 18.9398 (10) Å0.19 × 0.18 × 0.15 mm
Data collection top
Bruker SMART
diffractometer
2554 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2305 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 1.000Rint = 0.033
8103 measured reflectionsθmax = 25.1°
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.41 e Å3
S = 1.08Δρmin = 0.34 e Å3
2554 reflectionsAbsolute structure: Flack (1983), 1056 Friedel pairs
208 parametersFlack parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.3321 (5)0.5388 (4)0.2207 (2)0.0428 (11)
H170.22470.49040.22400.051*
C180.4685 (6)0.5214 (4)0.2684 (2)0.0413 (11)
H180.45280.46350.30510.050*
Ag10.87935 (4)0.85088 (3)0.101833 (16)0.04331 (11)
C61.4013 (5)1.0168 (4)0.0955 (2)0.0428 (10)
H61.50831.01870.12270.051*
O20.5261 (3)0.7849 (2)0.10618 (14)0.0319 (6)
H2A0.43180.78630.08210.048*
O11.2184 (3)0.8451 (3)0.05683 (12)0.0347 (6)
C81.2323 (5)0.9235 (4)0.00265 (19)0.0279 (8)
C71.3899 (6)0.9315 (4)0.03871 (19)0.0360 (9)
H71.49030.87910.02860.043*
C91.0833 (4)1.0077 (3)0.01372 (18)0.0264 (8)
C130.6343 (5)0.5908 (3)0.26259 (18)0.0300 (8)
C150.5067 (5)0.6993 (3)0.15794 (19)0.0268 (8)
N10.9246 (4)1.0033 (3)0.02576 (16)0.0309 (8)
N20.8161 (4)0.7483 (3)0.19863 (16)0.0280 (7)
C110.9365 (5)0.6477 (5)0.3027 (2)0.0406 (10)
H111.03250.64070.33520.049*
C160.3498 (5)0.6289 (4)0.1662 (2)0.0372 (9)
H160.25200.64080.13500.045*
C140.6564 (4)0.6808 (3)0.20672 (18)0.0245 (8)
C20.7975 (5)1.1738 (4)0.0422 (2)0.0435 (11)
H20.69961.22970.04970.052*
C41.0976 (5)1.0959 (3)0.07134 (19)0.0325 (9)
C30.9487 (6)1.1781 (4)0.0839 (2)0.0411 (11)
H30.95401.23590.12110.049*
C100.9497 (5)0.7328 (4)0.2455 (2)0.0404 (10)
H101.05740.78040.24040.048*
C10.7905 (5)1.0843 (4)0.0121 (2)0.0414 (11)
H10.68511.08180.04020.050*
C120.7824 (6)0.5764 (4)0.3098 (2)0.0388 (10)
H120.77420.51720.34620.047*
C51.2597 (5)1.0971 (4)0.1118 (2)0.0401 (10)
H51.27051.15260.14980.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.033 (2)0.037 (3)0.059 (3)0.0098 (19)0.0030 (19)0.007 (2)
C180.047 (2)0.035 (3)0.042 (3)0.002 (2)0.010 (2)0.015 (2)
Ag10.04359 (16)0.04830 (19)0.03805 (17)0.00869 (17)0.00683 (17)0.01115 (17)
C60.039 (2)0.054 (3)0.036 (2)0.013 (2)0.013 (2)0.006 (2)
O20.0300 (11)0.0322 (14)0.0337 (14)0.0030 (11)0.0046 (13)0.0085 (14)
O10.0289 (12)0.0401 (16)0.0350 (14)0.0029 (14)0.0021 (11)0.0112 (15)
C80.0259 (18)0.031 (2)0.027 (2)0.0041 (18)0.0037 (16)0.0017 (18)
C70.0288 (18)0.041 (2)0.038 (2)0.002 (2)0.002 (2)0.0019 (18)
C90.0271 (19)0.027 (2)0.0249 (19)0.0052 (17)0.0029 (15)0.0009 (15)
C130.0324 (18)0.029 (2)0.028 (2)0.008 (2)0.0037 (18)0.0008 (15)
C150.0291 (18)0.023 (2)0.028 (2)0.0052 (16)0.0018 (16)0.0009 (17)
N10.0246 (16)0.0364 (19)0.0318 (18)0.0006 (15)0.0009 (12)0.0021 (14)
N20.0268 (15)0.0289 (18)0.0283 (17)0.0006 (14)0.0010 (13)0.0005 (15)
C110.037 (2)0.049 (3)0.036 (2)0.005 (2)0.0110 (16)0.006 (2)
C160.034 (2)0.035 (2)0.043 (2)0.004 (2)0.0063 (17)0.0065 (18)
C140.0257 (17)0.022 (2)0.0257 (18)0.0052 (16)0.0037 (14)0.0016 (15)
C20.041 (2)0.042 (3)0.048 (3)0.014 (2)0.009 (2)0.007 (2)
C40.039 (2)0.029 (2)0.029 (2)0.008 (2)0.0038 (17)0.0036 (15)
C30.053 (2)0.030 (2)0.040 (3)0.0032 (19)0.0094 (19)0.0092 (19)
C100.032 (2)0.050 (3)0.040 (2)0.002 (2)0.0016 (18)0.000 (2)
C10.031 (2)0.049 (3)0.044 (3)0.008 (2)0.0000 (19)0.003 (2)
C120.051 (2)0.034 (3)0.030 (2)0.003 (2)0.0009 (19)0.0078 (19)
C50.044 (2)0.041 (3)0.035 (2)0.010 (2)0.001 (2)0.011 (2)
Geometric parameters (Å, º) top
C17—C181.349 (6)C13—C141.427 (5)
C17—C161.406 (5)C15—C161.362 (5)
C17—H170.9300C15—C141.436 (5)
C18—C131.407 (6)N1—C11.316 (5)
C18—H180.9300N2—C101.322 (5)
Ag1—N22.174 (3)N2—C141.364 (4)
Ag1—N12.176 (3)C11—C121.348 (5)
Ag1—O12.596 (2)C11—C101.408 (6)
Ag1—O22.649 (2)C11—H110.9300
C6—C51.361 (6)C16—H160.9300
C6—C71.401 (5)C2—C31.349 (5)
C6—H60.9300C2—C11.394 (6)
O2—C151.336 (4)C2—H20.9300
O2—H2A0.8200C4—C31.400 (5)
O1—C81.319 (4)C4—C51.400 (6)
C8—C71.386 (5)C3—H30.9300
C8—C91.427 (5)C10—H100.9300
C7—H70.9300C1—H10.9300
C9—N11.370 (4)C12—H120.9300
C9—C41.434 (5)C5—H50.9300
C13—C121.403 (5)
C18—C17—C16121.1 (4)C9—N1—Ag1120.8 (2)
C18—C17—H17119.5C10—N2—C14118.7 (3)
C16—C17—H17119.5C10—N2—Ag1118.3 (2)
C17—C18—C13120.1 (4)C14—N2—Ag1122.0 (2)
C17—C18—H18120.0C12—C11—C10118.9 (3)
C13—C18—H18120.0C12—C11—H11120.5
N2—Ag1—N1162.38 (12)C10—C11—H11120.5
N2—Ag1—O1117.62 (9)C15—C16—C17121.6 (3)
N1—Ag1—O170.00 (10)C15—C16—H16119.2
N2—Ag1—O269.00 (9)C17—C16—H16119.2
N1—Ag1—O2110.96 (9)N2—C14—C13121.4 (3)
O1—Ag1—O2156.21 (9)N2—C14—C15119.7 (3)
C5—C6—C7121.7 (4)C13—C14—C15118.8 (3)
C5—C6—H6119.2C3—C2—C1118.9 (4)
C7—C6—H6119.2C3—C2—H2120.5
C15—O2—H2A109.5C1—C2—H2120.5
C8—O1—Ag1108.2 (2)C3—C4—C5123.0 (4)
O1—C8—C7122.7 (3)C3—C4—C9118.1 (4)
O1—C8—C9119.8 (3)C5—C4—C9118.8 (3)
C7—C8—C9117.4 (3)C2—C3—C4120.2 (4)
C8—C7—C6121.4 (4)C2—C3—H3119.9
C8—C7—H7119.3C4—C3—H3119.9
C6—C7—H7119.3N2—C10—C11123.1 (4)
N1—C9—C8119.5 (3)N2—C10—H10118.5
N1—C9—C4119.8 (3)C11—C10—H10118.5
C8—C9—C4120.6 (3)N1—C1—C2123.6 (4)
C12—C13—C18123.1 (3)N1—C1—H1118.2
C12—C13—C14117.3 (4)C2—C1—H1118.2
C18—C13—C14119.7 (3)C11—C12—C13120.5 (4)
O2—C15—C16122.3 (3)C11—C12—H12119.7
O2—C15—C14118.9 (3)C13—C12—H12119.7
C16—C15—C14118.8 (3)C6—C5—C4120.0 (4)
C1—N1—C9119.2 (3)C6—C5—H5120.0
C1—N1—Ag1119.6 (3)C4—C5—H5120.0
C16—C17—C18—C132.2 (7)Ag1—N2—C14—C13165.2 (2)
N2—Ag1—O1—C8173.2 (2)C10—N2—C14—C15177.8 (3)
N1—Ag1—O1—C810.6 (2)Ag1—N2—C14—C1514.3 (4)
Ag1—O1—C8—C7172.3 (3)C12—C13—C14—N21.3 (5)
Ag1—O1—C8—C99.9 (4)C18—C13—C14—N2178.9 (3)
O1—C8—C7—C6179.3 (4)C12—C13—C14—C15179.2 (3)
C9—C8—C7—C61.4 (5)C18—C13—C14—C150.6 (5)
C5—C6—C7—C81.1 (6)O2—C15—C14—N21.4 (5)
O1—C8—C9—N12.1 (5)C16—C15—C14—N2178.7 (3)
C7—C8—C9—N1180.0 (3)O2—C15—C14—C13179.1 (3)
O1—C8—C9—C4178.4 (3)C16—C15—C14—C130.9 (5)
C7—C8—C9—C40.5 (5)N1—C9—C4—C31.9 (5)
C17—C18—C13—C12179.3 (4)C8—C9—C4—C3178.6 (3)
C17—C18—C13—C140.9 (6)N1—C9—C4—C5178.8 (3)
C8—C9—N1—C1177.5 (3)C8—C9—C4—C50.7 (5)
C4—C9—N1—C13.0 (5)C1—C2—C3—C41.6 (6)
C8—C9—N1—Ag19.7 (4)C5—C4—C3—C2178.9 (4)
C4—C9—N1—Ag1169.8 (2)C9—C4—C3—C20.4 (6)
N2—Ag1—N1—C157.9 (5)C14—N2—C10—C111.4 (6)
O1—Ag1—N1—C1176.8 (3)Ag1—N2—C10—C11167.0 (3)
N2—Ag1—N1—C9129.4 (4)C12—C11—C10—N21.3 (6)
O1—Ag1—N1—C910.4 (2)C9—N1—C1—C21.8 (6)
N1—Ag1—N2—C1084.3 (4)Ag1—N1—C1—C2171.1 (3)
O1—Ag1—N2—C1027.5 (3)C3—C2—C1—N10.5 (7)
N1—Ag1—N2—C14107.7 (4)C10—C11—C12—C132.7 (6)
O1—Ag1—N2—C14140.4 (2)C18—C13—C12—C11178.3 (4)
O2—C15—C16—C17179.7 (4)C14—C13—C12—C111.5 (6)
C14—C15—C16—C170.4 (6)C7—C6—C5—C40.2 (6)
C18—C17—C16—C152.0 (7)C3—C4—C5—C6178.2 (4)
C10—N2—C14—C132.7 (5)C9—C4—C5—C61.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.732.495 (3)154
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.732.495 (3)154.4
Symmetry code: (i) x1, y, z.
Acknowledgements top

We thank the Guangdong Medical College for financial support (Q2009028, 2010 C3102003, 200910815266) and acknowledge H. P. Xiao for the data collection.

references
References top

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.