supplementary materials


hy2615 scheme

Acta Cryst. (2013). E69, m148    [ doi:10.1107/S1600536813003711 ]

1,3-Dimethyl-1H-1,2,3-benzotriazol-3-ium tetrachloridoferrate(III)

Z. Sun, D.-C. Hu and J.-C. Liu

Abstract top

The asymmetric unit of the title salt, (C8H10N3)[FeCl4], contains one 1,3-dimethyl-1H-1,2,3-benzotriazol-3-ium cation and one tetrachloridoferrate anion. The FeIII atom in the anion is tetrahedrally coordinated by four Cl atoms. In the crystal, interactions are observed between the Cl atoms and the triazolium ring [Cl...centroid distances = 3.587 (3) and 3.866 (3) Å].

Comment top

Iron-containing compounds are ubiquitous throughout the field of coordination chemistry. Recently, a variety of iron compounds have been added to the list of iron coordination complexes (Hay et al., 2003; Liu et al., 2000; Lorenz et al., 2000; Shapley et al., 2003).

In the title compound (Fig. 1), the FeIII atom in the [FeCl4]- anion is four-coordinated in a distorted tetrahedral geometry. The Cl—Fe—Cl bond angles are in the range of 108.35 (6)–111.33 (8) °, while the Fe—Cl bond lengths are in the range of 2.1634 (17)–2.1867 (14) Å. Three Cl—Fe—Cl angles are smaller than tetrahedral and the other three are greater than tetrahedral one. In the crystal, interactions between the Cl atoms and the triazolium rings are present [Cl···centroid distances = 3.587 (3) and 3.866 (3) Å].

Related literature top

For related iron complexes, see: Hay et al. (2003); Liu et al. (2000); Lorenz et al. (2000); Shapley et al. (2003).

Experimental top

FeCl3.6H2O (0.1 mmol, 27.0 mg) was dissolved in 15 ml CH3OH. To this yellow solution, one equivalent of 1,3-dimethyl-1H-benzo[1,2,3]triazolenium chlorate (0.1 mmol, 18.4 mg) was added with stirring. The mixture was filtered and held at room temperature to allow slow evaporation of solvent after stirring 30 min. Block crystals suitable for X-ray diffraction were obtained after one week (yield: 64%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO (Oxford Diffraction, 2012); data reduction: CrysAlis PRO (Oxford Diffraction, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis.
1,3-Dimethyl-1H-1,2,3-benzotriazol-3-ium tetrachloridoferrate(III) top
Crystal data top
(C8H10N3)[FeCl4]F(000) = 1384
Mr = 345.84Dx = 1.575 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1751 reflections
a = 10.2920 (5) Åθ = 3.1–28.5°
b = 12.5518 (6) ŵ = 1.74 mm1
c = 22.5857 (9) ÅT = 293 K
V = 2917.7 (2) Å3Block, yellow
Z = 80.32 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
3016 independent reflections
Radiation source: fine-focus sealed tube1828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0733 pixels mm-1θmax = 26.5°, θmin = 3.1°
ω scansh = 126
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
k = 1512
Tmin = 0.578, Tmax = 0.647l = 2828
8114 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 1.072P]
where P = (Fo2 + 2Fc2)/3
3016 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C8H10N3)[FeCl4]V = 2917.7 (2) Å3
Mr = 345.84Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.2920 (5) ŵ = 1.74 mm1
b = 12.5518 (6) ÅT = 293 K
c = 22.5857 (9) Å0.32 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
3016 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
1828 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.647Rint = 0.031
8114 measured reflectionsθmax = 26.5°
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.183Δρmax = 0.53 e Å3
S = 1.05Δρmin = 0.39 e Å3
3016 reflectionsAbsolute structure: ?
147 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2130 (5)0.5085 (4)0.3377 (2)0.0934 (14)
N20.1550 (5)0.5572 (4)0.3863 (2)0.0907 (14)
N30.2259 (5)0.5203 (4)0.4309 (2)0.0912 (13)
C10.3237 (4)0.4541 (4)0.4130 (2)0.0650 (11)
C20.4177 (6)0.3997 (5)0.4452 (2)0.0927 (17)
H20.42380.40340.48630.111*
C30.5016 (6)0.3393 (5)0.4106 (3)0.0986 (17)
H30.56690.30060.42930.118*
C40.4922 (6)0.3345 (6)0.3510 (3)0.1023 (18)
H40.55220.29370.33020.123*
C50.3950 (6)0.3889 (5)0.3193 (2)0.0877 (16)
H50.38740.38450.27830.105*
C60.3140 (6)0.4478 (5)0.3524 (2)0.0823 (15)
C70.1582 (6)0.5291 (6)0.2780 (3)0.124 (3)
H7A0.13170.46300.26040.186*
H7B0.22300.56220.25350.186*
H7C0.08440.57550.28140.186*
C80.1916 (6)0.5507 (5)0.4913 (2)0.111 (2)
H8A0.12290.60230.49030.166*
H8B0.26620.58080.51060.166*
H8C0.16320.48880.51270.166*
Fe10.53140 (7)0.75129 (5)0.36820 (3)0.0621 (3)
Cl10.40700 (15)0.76662 (12)0.44622 (6)0.0934 (5)
Cl20.6707 (2)0.62448 (18)0.38165 (8)0.1478 (9)
Cl30.63300 (15)0.90130 (13)0.35368 (7)0.0997 (5)
Cl40.40818 (16)0.71994 (13)0.29142 (6)0.1007 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.089 (3)0.084 (3)0.108 (4)0.025 (3)0.029 (3)0.027 (3)
N20.086 (3)0.079 (3)0.107 (4)0.005 (3)0.020 (3)0.016 (3)
N30.094 (3)0.083 (3)0.097 (3)0.019 (3)0.010 (3)0.012 (3)
C10.064 (3)0.070 (3)0.060 (3)0.009 (2)0.001 (2)0.004 (2)
C20.105 (4)0.108 (4)0.064 (3)0.027 (4)0.012 (3)0.008 (3)
C30.100 (4)0.116 (5)0.080 (4)0.019 (4)0.001 (3)0.007 (4)
C40.097 (4)0.127 (5)0.083 (4)0.001 (4)0.002 (3)0.012 (4)
C50.105 (4)0.108 (4)0.050 (3)0.030 (3)0.009 (3)0.009 (3)
C60.089 (4)0.087 (4)0.071 (3)0.036 (3)0.003 (3)0.003 (3)
C70.127 (5)0.136 (6)0.110 (5)0.039 (4)0.062 (4)0.046 (4)
C80.130 (5)0.109 (5)0.093 (4)0.037 (4)0.042 (4)0.043 (4)
Fe10.0725 (5)0.0589 (5)0.0548 (4)0.0043 (3)0.0006 (3)0.0041 (3)
Cl10.1005 (10)0.1047 (11)0.0749 (9)0.0156 (8)0.0246 (8)0.0135 (7)
Cl20.1852 (19)0.1443 (18)0.1138 (14)0.1036 (16)0.0155 (12)0.0183 (11)
Cl30.1123 (11)0.1022 (11)0.0847 (10)0.0438 (9)0.0079 (8)0.0060 (8)
Cl40.1173 (11)0.1100 (11)0.0748 (9)0.0393 (9)0.0193 (8)0.0016 (8)
Geometric parameters (Å, º) top
N1—C61.332 (7)C4—H40.9300
N1—N21.390 (7)C5—C61.342 (7)
N1—C71.485 (7)C5—H50.9300
N2—N31.327 (6)C7—H7A0.9600
N3—C11.367 (6)C7—H7B0.9600
N3—C81.460 (6)C7—H7C0.9600
C1—C61.373 (7)C8—H8A0.9600
C1—C21.390 (7)C8—H8B0.9600
C2—C31.390 (8)C8—H8C0.9600
C2—H20.9300Fe1—Cl22.1636 (17)
C3—C41.351 (8)Fe1—Cl32.1786 (15)
C3—H30.9300Fe1—Cl42.1840 (14)
C4—C51.408 (8)Fe1—Cl12.1867 (15)
C6—N1—N2112.9 (5)N1—C6—C5131.3 (6)
C6—N1—C7128.6 (6)N1—C6—C1105.8 (5)
N2—N1—C7118.5 (5)C5—C6—C1122.9 (6)
N3—N2—N1102.2 (4)N1—C7—H7A109.5
N2—N3—C1113.1 (5)N1—C7—H7B109.5
N2—N3—C8119.1 (5)H7A—C7—H7B109.5
C1—N3—C8127.9 (5)N1—C7—H7C109.5
N3—C1—C6106.1 (5)H7A—C7—H7C109.5
N3—C1—C2131.0 (5)H7B—C7—H7C109.5
C6—C1—C2122.9 (5)N3—C8—H8A109.5
C3—C2—C1113.9 (5)N3—C8—H8B109.5
C3—C2—H2123.0H8A—C8—H8B109.5
C1—C2—H2123.0N3—C8—H8C109.5
C4—C3—C2122.7 (5)H8A—C8—H8C109.5
C4—C3—H3118.6H8B—C8—H8C109.5
C2—C3—H3118.6Cl2—Fe1—Cl3109.81 (10)
C3—C4—C5122.4 (6)Cl2—Fe1—Cl4111.32 (8)
C3—C4—H4118.8Cl3—Fe1—Cl4108.36 (6)
C5—C4—H4118.8Cl2—Fe1—Cl1109.85 (7)
C6—C5—C4115.1 (5)Cl3—Fe1—Cl1109.04 (7)
C6—C5—H5122.4Cl4—Fe1—Cl1108.41 (7)
C4—C5—H5122.4
C6—N1—N2—N31.1 (5)C3—C4—C5—C61.3 (8)
C7—N1—N2—N3179.0 (4)N2—N1—C6—C5179.6 (5)
N1—N2—N3—C10.9 (5)C7—N1—C6—C50.4 (9)
N1—N2—N3—C8177.7 (4)N2—N1—C6—C10.9 (5)
N2—N3—C1—C60.4 (5)C7—N1—C6—C1179.2 (5)
C8—N3—C1—C6178.0 (5)C4—C5—C6—N1180.0 (5)
N2—N3—C1—C2179.8 (5)C4—C5—C6—C10.6 (7)
C8—N3—C1—C21.4 (8)N3—C1—C6—N10.3 (5)
N3—C1—C2—C3180.0 (5)C2—C1—C6—N1179.2 (5)
C6—C1—C2—C30.7 (7)N3—C1—C6—C5179.9 (5)
C1—C2—C3—C40.1 (8)C2—C1—C6—C50.4 (7)
C2—C3—C4—C51.1 (9)
Acknowledgements top

We are thankful for support of this study by the National Natural Science Foundation of China (grant No. J0730425) and the Gansu Provincial Natural Science Foundation of China (grant No. 0710RJZA113).

references
References top

Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431–434.

Liu, F., John, K. D., Scott, B. L., Baker, T. R., Ott, K. C. & Tumas, W. (2000). Angew. Chem. Int. Ed. 39, 3127–3130.

Lorenz, V., Fischer, A. & Edelmann, F. T. (2000). Z. Anorg. Allg. Chem. 626, 1728–1730.

Oxford Diffraction (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Shapley, P. A., Bigham, W. S. & Hay, M. T. (2003). Inorg. Chim. Acta, 345, 255–260.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.