supplementary materials


rz5039 scheme

Acta Cryst. (2013). E69, m132    [ doi:10.1107/S1600536813002985 ]

4,4'-(Ethene-1,2-diyl)dipyridinium 4-[2-(pyridin-4-yl)ethenyl]pyridinium octacyanidomolybdate(V) tetrahydrate

X.-Z. Yang, A.-Y. Hu and A.-H. Yuan

Abstract top

The crystal structure of the title compound, (C12H12N2)(C12H11N2)[Mo(CN)8]·4H2O, consists of 4,4'-(ethene-1,2-diyl)dipyridinium and 4-[2-(pyridin-4-yl)ethenyl]pyridinium cations disordered over the same site, an [Mo(CN)8]3- anion and four water molecules of crystallization. The eight-coordinate [Mo(CN)8]3- unit exhibits a slightly distorted square-antiprismatic geometry. In the structure, the cations (crystallographic symmetry, 2) and anions (crystallographic symmetry, 222) are arranged alternately by N-H...O and O-H...N hydrogen bonds, forming layers parallel to the bc plane. These layers are further linked through O-H...N hydrogen bonds, generating a three-dimensional supramolecular network.

Comment top

In the past few years, much attention has been put into the design and construction of multi-functional materials (Zhou et al., 2012). Octacyanometallates [M(CN)8]n- (M = Mo, W; n = 3, 4) with flexible coordination modes and lower symmetries have been aggressively studied recently (Nowicka et al., 2012), because these building blocks can adopt various geometries, e.g., square antiprismatic, dodecahedral or bicapped trigonal prismatic, depending on the external environments. The combination of the [M(CN)8]n- precusors and the second metal centers has produced various dimensional molecular structures and the resulting materials have displayed intriguing properties (Sieklucka et al., 2011). However, the development of octacyano- and lanthanide-based assemblies has been somewhat hampered by the tendency of the lanthanide ions to adopt higher coordination numbers, their ability to easily adapt to a given environment, and in the absence of design strategies for 4f-4d/5d networks. Recently, we used [MoV(CN)8]3- as building block to react with the lanthanide ion Ce3+ and dpe ligand (dpe = 1,2-di(pyridin-4-yl)ethylene), in order to obtain new octacyanide-based 4f/4 d compound with open structure. Unfortunately, a new ion-pair compound without Ce3+ ions was isolated. The asymmetric unit of the title compound contains 4,4'-ethene-1,2-diyldipyridinium, [H2dpe]2+, and 4-(2-(pyridin-4-yl)ethenyl)pyridinium, [Hdpe]+, cations, one [Mo(CN)8]3- anion, and four crystallized water molecules (Fig. 1). Both the [H2dpe]2+ and [Hdpe]+ cations are disordered over the same site. The eight-coordinated [Mo(CN)8] unit exhibits a distorted slightly square antiprismatic geometry, typical of octacyanometalates (Prins et al., 2007; Tanase et al., 2008). The average distances of Mo1—C and C—N bonds are 2.1682 and 1.156 Å, respectively, while the Mo1—CN bonds are almost linear with the maximum deviation from linearity of 3.8°.

In the structure, [H2dpe]2+ cation, [Hdpe]+ cation and [Mo(CN)8]3- unit are arranged alternatively through N3—H3X···O1 and O1—H1B···N2v (symmetric code: (v) -x + 1/2, -y, z) hydrogen bonds (Table 1) to generate a two-dimensional layer. These layers are further interlinked through O1—H1A···N1iv (symmetric code: (iv) x + 1, y - 1/2, -z) hydrogen bonds, forming a three-dimensional supramolecular network (Fig. 2). This structural feature has also been observed in related octacyanide-based compounds (C10H10N4)(C10H9N4)[M(CN)8].nH2O (M = Mo, W) (Qian et al., 2009; Liu et al., 2008).

Related literature top

For general background to the design and construction of multi-functional materials, see: Nowicka et al. (2012); Prins et al. (2007); Sieklucka et al. (2011); Tanase et al. (2008); Zhou et al. (2012). For related structures, see: Liu et al. (2008); Qian et al. (2009).

Experimental top

Single crystals of the title compound were prepared at room temperature by slow diffusion of a CH3CN/H2O (1:1 v/v) solution containing both CeIII(NO3)3.6H2O (0.05 mmol) and dpe (0.15 mmol) in a CH3CN/H2O (1:1 v/v) solution of [HN(n-C4H9)3]3[MoV(CN)8].4H2O (0.05 mmol). After four weeks, dark-blue rod-like crystals were obtained.

Refinement top

All non-H atoms were refined anisotropically. The (C)H atoms were calculated at idealized positions and included in the refinement in a riding mode. The (N)H and (O)H atoms of water molecules were located from a difference Fourier map and refined as riding [N—H = 0.89 Å, U(H) = 1.2Ueq(N); O—H = 0.85 Å, U(H) = 1.5Ueq(O)], with the occupancy factor of the N-bound H atoms set to. 0.75

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with thermal ellipsoids at the 30% probability level. All H atoms were removed for clarity. Symmetry codes: (i) x, -y + 1/2, -z + 1/2; (ii) -x, -y + 1/2, z; (iii) -x, y, -z + 1/2
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title compound.
4,4'-(Ethene-1,2-diyl)dipyridinium 4-[2-(pyridin-4-yl)ethenyl]pyridinium octacyanidomolybdate(V) tetrahydrate top
Crystal data top
(C12H12N2)(C12H11N2)[Mo(CN)8]·4H2OF(000) = 1524
Mr = 743.63Dx = 1.567 Mg m3
Orthorhombic, CccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2b 2bcCell parameters from 6602 reflections
a = 12.403 (3) Åθ = 3.4–29.0°
b = 16.534 (3) ŵ = 0.48 mm1
c = 15.370 (3) ÅT = 291 K
V = 3151.8 (11) Å3Rod, dark blue
Z = 40.18 × 0.15 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
1442 independent reflections
Radiation source: fine-focus sealed tube1388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
phi and ω scansθmax = 25.3°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.919, Tmax = 0.941k = 1519
6789 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0237P)2 + 4.1639P]
where P = (Fo2 + 2Fc2)/3
1442 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
(C12H12N2)(C12H11N2)[Mo(CN)8]·4H2OV = 3151.8 (11) Å3
Mr = 743.63Z = 4
Orthorhombic, CccaMo Kα radiation
a = 12.403 (3) ŵ = 0.48 mm1
b = 16.534 (3) ÅT = 291 K
c = 15.370 (3) Å0.18 × 0.15 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
1442 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1388 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.941Rint = 0.016
6789 measured reflectionsθmax = 25.3°
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.28 e Å3
S = 1.09Δρmin = 0.31 e Å3
1442 reflectionsAbsolute structure: ?
112 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.00000.25000.25000.01026 (10)
O10.65008 (10)0.07739 (7)0.07004 (7)0.0222 (3)
H1A0.70810.08190.09910.033*
H1B0.65150.11560.03300.033*
N10.15776 (12)0.39926 (8)0.18061 (8)0.0217 (3)
N20.12604 (11)0.18087 (8)0.07447 (9)0.0214 (3)
N30.61502 (11)0.04861 (9)0.04165 (9)0.0222 (3)
H3X0.61770.01140.00010.027*0.75
C10.10315 (12)0.34816 (9)0.20714 (9)0.0153 (3)
C20.08556 (13)0.20481 (9)0.13705 (10)0.0153 (3)
C30.61146 (13)0.12818 (10)0.02559 (10)0.0226 (4)
H30.60630.14660.03140.027*
C40.61534 (13)0.18237 (10)0.09245 (10)0.0197 (3)
H40.61250.23750.08090.024*
C50.62366 (12)0.15508 (9)0.17825 (10)0.0171 (3)
C60.62332 (13)0.07142 (10)0.19249 (11)0.0212 (4)
H60.62580.05110.24890.025*
C70.61929 (14)0.01956 (10)0.12305 (11)0.0239 (4)
H70.61950.03600.13240.029*
C80.62950 (13)0.20979 (10)0.25268 (10)0.0177 (3)
H80.63350.18680.30780.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01259 (15)0.00997 (14)0.00822 (14)0.0000.0000.000
O10.0281 (6)0.0209 (6)0.0175 (6)0.0004 (5)0.0046 (5)0.0005 (5)
N10.0279 (8)0.0213 (7)0.0158 (7)0.0060 (6)0.0014 (6)0.0007 (6)
N20.0263 (8)0.0205 (7)0.0175 (7)0.0032 (6)0.0032 (6)0.0003 (6)
N30.0209 (7)0.0244 (8)0.0213 (7)0.0016 (6)0.0000 (6)0.0098 (6)
C10.0185 (8)0.0168 (8)0.0107 (7)0.0012 (6)0.0010 (6)0.0029 (6)
C20.0168 (8)0.0125 (8)0.0166 (8)0.0007 (6)0.0011 (7)0.0027 (6)
C30.0219 (8)0.0295 (10)0.0164 (8)0.0023 (7)0.0000 (7)0.0004 (7)
C40.0222 (8)0.0181 (8)0.0188 (8)0.0018 (6)0.0005 (7)0.0007 (6)
C50.0141 (7)0.0187 (8)0.0186 (8)0.0013 (6)0.0003 (6)0.0010 (6)
C60.0253 (9)0.0193 (8)0.0190 (8)0.0005 (7)0.0006 (7)0.0013 (6)
C70.0255 (9)0.0182 (9)0.0281 (9)0.0005 (7)0.0011 (8)0.0028 (7)
C80.0184 (8)0.0199 (8)0.0149 (8)0.0019 (7)0.0011 (6)0.0002 (6)
Geometric parameters (Å, º) top
Mo1—C22.1674 (16)N3—C71.341 (2)
Mo1—C2i2.1674 (16)N3—H3X0.8896
Mo1—C2ii2.1674 (16)C3—C41.364 (2)
Mo1—C2iii2.1674 (16)C3—H30.9300
Mo1—C1i2.1690 (16)C4—C51.398 (2)
Mo1—C1iii2.1690 (16)C4—H40.9300
Mo1—C12.1690 (16)C5—C61.400 (2)
Mo1—C1ii2.1690 (16)C5—C81.460 (2)
O1—H1A0.8501C6—C71.370 (2)
O1—H1B0.8505C6—H60.9300
N1—C11.157 (2)C7—H70.9300
N2—C21.155 (2)C8—C8i1.332 (3)
N3—C31.339 (2)C8—H80.9300
C2—Mo1—C2i121.37 (8)C1iii—Mo1—C1ii107.72 (8)
C2—Mo1—C2ii73.57 (8)C1—Mo1—C1ii144.64 (8)
C2i—Mo1—C2ii139.67 (8)H1A—O1—H1B105.6
C2—Mo1—C2iii139.67 (8)C3—N3—C7121.66 (14)
C2i—Mo1—C2iii73.57 (8)C3—N3—H3X123.2
C2ii—Mo1—C2iii121.37 (8)C7—N3—H3X115.1
C2—Mo1—C1i72.33 (5)N1—C1—Mo1177.01 (13)
C2i—Mo1—C1i74.09 (6)N2—C2—Mo1176.36 (14)
C2ii—Mo1—C1i142.18 (5)N3—C3—C4120.35 (15)
C2iii—Mo1—C1i77.74 (6)N3—C3—H3119.8
C2—Mo1—C1iii142.18 (5)C4—C3—H3119.8
C2i—Mo1—C1iii77.74 (6)C3—C4—C5120.08 (15)
C2ii—Mo1—C1iii72.33 (5)C3—C4—H4120.0
C2iii—Mo1—C1iii74.09 (6)C5—C4—H4120.0
C1i—Mo1—C1iii144.64 (8)C4—C5—C6117.78 (14)
C2—Mo1—C174.09 (6)C4—C5—C8122.88 (14)
C2i—Mo1—C172.33 (5)C6—C5—C8119.32 (14)
C2ii—Mo1—C177.74 (6)C7—C6—C5119.78 (15)
C2iii—Mo1—C1142.18 (5)C7—C6—H6120.1
C1i—Mo1—C1107.72 (8)C5—C6—H6120.1
C1iii—Mo1—C183.12 (8)N3—C7—C6120.27 (15)
C2—Mo1—C1ii77.74 (6)N3—C7—H7119.9
C2i—Mo1—C1ii142.18 (5)C6—C7—H7119.9
C2ii—Mo1—C1ii74.09 (6)C8i—C8—C5124.74 (18)
C2iii—Mo1—C1ii72.33 (5)C8i—C8—H8117.6
C1i—Mo1—C1ii83.12 (8)C5—C8—H8117.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1iv0.852.112.9524 (19)174
O1—H1B···N2v0.852.002.8195 (18)162
N3—H3X···O10.891.862.7342 (17)166
Symmetry codes: (iv) x+1, y1/2, z; (v) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.852.112.9524 (19)173.9
O1—H1B···N2ii0.852.002.8195 (18)162.0
N3—H3X···O10.891.862.7342 (17)165.7
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1/2, y, z.
references
References top

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.

Liu, W.-Y., Zhou, H. & Yuan, A.-H. (2008). Acta Cryst. E64, m1151.

Nowicka, B., Korzeniak, T., Stefańczyk, O., Pinkowicz, D., Chorąży, S., Podgajny, R. & Sieklucka, B. (2012). Coord. Chem. Rev. 256, 1946–1971.

Prins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. & Tanase, S. (2007). Angew. Chem. Int. Ed. 46, 6081–6084.

Qian, S.-Y., Liu, W.-Y. & Yuan, A.-H. (2009). Acta Cryst. E65, m1031–m1032.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305–326.

Tanase, S., de Jongh, L. J., Prins, F. & Evangelisti, M. (2008). ChemPhysChem, 9, 1975–1978.

Zhou, H.-C., Long, J. F. & Yaghi, O. M. (2012). Chem. Rev. 112, 673–674.