supplementary materials


xu5670 scheme

Acta Cryst. (2013). E69, m134    [ doi:10.1107/S1600536813001827 ]

Bis[2-(1H-benzotriazol-1-yl)-1H-benzimidazol-1-ido]diethanolcadmium

P. Cao, J.-C. Liu and D.-C. Hu

Abstract top

In the title complex, [Cd(C13H8N5)2(C2H5OH)2], the CdII cation is located on an inversion center and coordinated by two deprotonated 2-(1H-benzotriazol-1-yl)-1H-benzimidazol-1-ide (L) ligands and two ethanol molecules in a distorted N4O2 octahedral geometry. In the L ligand, the dihedral angle between benzoimidazole and benzotriazole ring systems is 10.8 (3)°. In the crystal, the complex molecules are connected by O-H...N hydrogen bonds; intermolecular [pi]-[pi] stacking is also observed [centroid-centroid distances of 3.668 (5) Å between triazole and benzene rings and 3.780 (5) Å between imidazole rings].

Comment top

Over the past decades, we lay much stress on the complexation of metal ions by nitrogen heterocyclic compounds as their applications in the areas of optical, lectronic properties and magnetice (Zhou et al., 2006; Batten & Robson, 1998; Zaworotko, 1994).

The title compound possesses the benzotriazole and the benzimidazole rings and can offer possibilities to form complicated coordination complexes (Wu et al. 2009). In the crystal, the asymmetric unit contains one half Cd2+ cation, one organic L ligands and one ethanol molecules. The Cd2+ is coordinated by four N atoms from two different L ligands and two O atoms from two ethanol molecules. Molecules are connected by O—H···N hydrogen bonds and π-π interactions [centroid–centroid distance = 3.668 (5) and 3.780 (5) Å] involving related triazole, imidazole and benzene rings.

Related literature top

For applications of metal comlexes with heterocyclic ligands, see: Zhou et al. (2006); Batten & Robson (1998); Zaworotko (1994). For a related structure, see: Wu et al. (2009).

Experimental top

To a yellow solution of L (35 mg, 0.15 mmol) and Cd(NO3)2 (52.3 mg, 0.3 mmol) in ethanol (15 ml) were placed in a Teflon lined stainless steel autoclave and heated at 120 °C for 3 days under autogenous pressure. Then it was allowed to cool to room temperature. Stick-shaped crystals were collected in 50% yield. The crystals were repeatedly washed with ethanol and air-dried.

Refinement top

Ethanol H atom was located in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated position and refined in riding-model approximation with C—H = 0.93 Å, Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
Bis[2-(1H-benzotriazol-1-yl)-1H-benzimidazol-1-ido]diethanolcadmium top
Crystal data top
[Cd(C13H8N5)2(C2H6O)2]F(000) = 684
Mr = 673.03Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3469 reflections
a = 8.7544 (4) Åθ = 3.4–28.4°
b = 8.0112 (2) ŵ = 0.81 mm1
c = 20.9382 (9) ÅT = 293 K
β = 101.352 (5)°Block, yellow
V = 1439.74 (10) Å30.32 × 0.28 × 0.25 mm
Z = 2
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
3636 independent reflections
Radiation source: fine-focus sealed tube2781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0733 pixels mm-1θmax = 28.5°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 910
Tmin = 0.773, Tmax = 0.818l = 2628
7375 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0356P)2 + 19.0636P]
where P = (Fo2 + 2Fc2)/3
3636 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 2.99 e Å3
1 restraintΔρmin = 0.97 e Å3
Crystal data top
[Cd(C13H8N5)2(C2H6O)2]V = 1439.74 (10) Å3
Mr = 673.03Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.7544 (4) ŵ = 0.81 mm1
b = 8.0112 (2) ÅT = 293 K
c = 20.9382 (9) Å0.32 × 0.28 × 0.25 mm
β = 101.352 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
3636 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2781 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.818Rint = 0.030
7375 measured reflectionsθmax = 28.5°
Refinement top
R[F2 > 2σ(F2)] = 0.089 w = 1/[σ2(Fo2) + (0.0356P)2 + 19.0636P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.221Δρmax = 2.99 e Å3
S = 1.20Δρmin = 0.97 e Å3
3636 reflectionsAbsolute structure: ?
200 parametersFlack parameter: ?
1 restraintRogers parameter: ?
H atoms treated by a mixture of independent and constrained refinement
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.50000.0382 (3)
N50.0518 (8)0.2674 (8)0.4545 (3)0.0345 (15)
N40.1590 (8)0.0074 (9)0.4596 (3)0.0371 (15)
C70.1439 (9)0.1508 (9)0.4883 (4)0.0303 (15)
N20.1878 (9)0.3336 (8)0.5803 (3)0.0397 (16)
C40.5416 (12)0.0727 (12)0.6419 (5)0.049 (2)
H40.60070.16890.64130.059*
C60.3410 (9)0.1084 (10)0.5935 (4)0.0341 (17)
C50.4252 (11)0.0382 (11)0.5883 (5)0.047 (2)
H50.40460.10680.55180.057*
C30.5740 (11)0.0307 (12)0.6967 (5)0.050 (2)
H30.65560.00320.73070.060*
C130.0046 (9)0.1884 (9)0.3956 (4)0.0320 (16)
O10.2074 (8)0.3361 (7)0.5291 (4)0.0470 (16)
H10.199 (14)0.233 (3)0.522 (6)0.071*
N30.2245 (8)0.1886 (8)0.5512 (3)0.0317 (14)
C90.0275 (11)0.0769 (11)0.3455 (4)0.0404 (19)
H90.06860.18420.34750.048*
C140.3409 (15)0.3597 (16)0.5541 (8)0.081 (4)
H14A0.36280.25860.57620.098*
H14B0.42810.38000.51850.098*
C20.4898 (11)0.1690 (12)0.7015 (5)0.046 (2)
H20.50960.23520.73870.055*
C120.1048 (11)0.2473 (11)0.3394 (4)0.042 (2)
H120.14830.35360.33720.050*
C100.0704 (12)0.0196 (14)0.2903 (5)0.052 (2)
H100.09370.08850.25390.063*
C110.1348 (12)0.1384 (12)0.2877 (5)0.049 (2)
H110.20100.17230.24960.059*
C80.0624 (9)0.0309 (9)0.3979 (4)0.0326 (17)
C10.3704 (10)0.2104 (10)0.6481 (4)0.0361 (17)
N10.2753 (9)0.3473 (9)0.6380 (4)0.0430 (17)
C150.3265 (19)0.5020 (19)0.6007 (8)0.096 (5)
H15A0.32350.60490.57740.144*
H15B0.23240.49030.63280.144*
H15C0.41450.50270.62180.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0529 (5)0.0192 (4)0.0413 (5)0.0066 (4)0.0064 (4)0.0031 (4)
N50.046 (4)0.017 (3)0.039 (4)0.004 (3)0.004 (3)0.001 (3)
N40.045 (4)0.026 (3)0.041 (4)0.006 (3)0.008 (3)0.007 (3)
C70.035 (4)0.018 (3)0.038 (4)0.000 (3)0.008 (3)0.004 (3)
N20.057 (4)0.022 (3)0.039 (4)0.010 (3)0.006 (3)0.003 (3)
C40.058 (6)0.030 (4)0.053 (6)0.013 (4)0.005 (4)0.003 (4)
C60.041 (4)0.020 (3)0.041 (4)0.000 (3)0.010 (3)0.002 (3)
C50.055 (5)0.032 (5)0.053 (5)0.009 (4)0.005 (4)0.001 (4)
C30.049 (5)0.043 (6)0.052 (5)0.001 (4)0.006 (4)0.004 (4)
C130.043 (4)0.020 (3)0.033 (4)0.005 (3)0.007 (3)0.004 (3)
O10.064 (4)0.019 (3)0.064 (4)0.007 (3)0.027 (3)0.001 (3)
N30.044 (4)0.019 (3)0.032 (3)0.003 (3)0.008 (3)0.000 (3)
C90.057 (5)0.027 (4)0.035 (4)0.009 (4)0.004 (4)0.007 (3)
C140.070 (8)0.053 (7)0.130 (12)0.010 (6)0.042 (8)0.007 (8)
C20.054 (5)0.039 (5)0.040 (5)0.004 (4)0.003 (4)0.002 (4)
C120.059 (5)0.029 (4)0.035 (4)0.013 (4)0.005 (4)0.004 (3)
C100.066 (6)0.049 (6)0.038 (5)0.003 (5)0.001 (4)0.008 (5)
C110.061 (6)0.045 (5)0.036 (5)0.003 (5)0.001 (4)0.001 (4)
C80.037 (4)0.024 (4)0.037 (4)0.001 (3)0.008 (3)0.005 (3)
C10.046 (4)0.028 (4)0.033 (4)0.001 (3)0.005 (3)0.000 (3)
N10.056 (4)0.032 (4)0.035 (4)0.007 (3)0.004 (3)0.007 (3)
C150.122 (12)0.065 (8)0.120 (12)0.018 (9)0.074 (10)0.029 (9)
Geometric parameters (Å, º) top
Cd1—O1i2.414 (7)C13—C81.388 (10)
Cd1—O12.414 (7)C13—C121.404 (11)
Cd1—N22.494 (7)O1—C141.384 (13)
Cd1—N2i2.494 (7)O1—H10.848 (10)
Cd1—N5i2.180 (6)C9—C101.375 (13)
Cd1—N52.180 (6)C9—C81.382 (11)
N5—C71.341 (10)C9—H90.9300
N5—C131.388 (10)C14—C151.489 (18)
N4—C71.316 (10)C14—H14A0.9700
N4—C81.411 (10)C14—H14B0.9700
C7—N31.399 (10)C2—C11.411 (12)
N2—N11.301 (10)C2—H20.9300
N2—N31.380 (9)C12—C111.374 (13)
C4—C51.387 (13)C12—H120.9300
C4—C31.398 (14)C10—C111.383 (14)
C4—H40.9300C10—H100.9300
C6—N31.371 (10)C11—H110.9300
C6—C11.388 (11)C1—N11.368 (11)
C6—C51.402 (11)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C3—C21.346 (13)C15—H15C0.9600
C3—H30.9300
N5i—Cd1—N5180.000 (1)C8—C13—N5108.1 (7)
N5i—Cd1—O1i82.9 (2)C8—C13—C12121.6 (8)
N5—Cd1—O1i97.1 (2)N5—C13—C12130.2 (7)
N5i—Cd1—O197.1 (2)C14—O1—Cd1138.9 (7)
N5—Cd1—O182.9 (2)C14—O1—H1108 (8)
O1i—Cd1—O1180.0 (2)Cd1—O1—H1113 (8)
N5i—Cd1—N2109.2 (2)C6—N3—N2108.5 (6)
N5—Cd1—N270.8 (2)C6—N3—C7132.8 (7)
O1i—Cd1—N291.8 (2)N2—N3—C7118.7 (6)
O1—Cd1—N288.2 (2)C10—C9—C8117.5 (8)
N5i—Cd1—N2i70.8 (2)C10—C9—H9121.2
N5—Cd1—N2i109.2 (2)C8—C9—H9121.2
O1i—Cd1—N2i88.2 (2)O1—C14—C15112.6 (11)
O1—Cd1—N2i91.8 (2)O1—C14—H14A109.1
N2—Cd1—N2i180.0 (3)C15—C14—H14A109.1
C7—N5—C13102.9 (6)O1—C14—H14B109.1
C7—N5—Cd1121.3 (5)C15—C14—H14B109.1
C13—N5—Cd1135.2 (5)H14A—C14—H14B107.8
C7—N4—C8101.9 (6)C3—C2—C1117.8 (9)
N4—C7—N5118.1 (7)C3—C2—H2121.1
N4—C7—N3122.8 (7)C1—C2—H2121.1
N5—C7—N3119.1 (7)C11—C12—C13115.9 (8)
N1—N2—N3109.6 (6)C11—C12—H12122.0
N1—N2—Cd1140.4 (5)C13—C12—H12122.0
N3—N2—Cd1109.4 (5)C9—C10—C11121.4 (9)
C5—C4—C3123.0 (9)C9—C10—H10119.3
C5—C4—H4118.5C11—C10—H10119.3
C3—C4—H4118.5C12—C11—C10122.5 (9)
N3—C6—C1104.5 (7)C12—C11—H11118.7
N3—C6—C5132.7 (8)C10—C11—H11118.7
C1—C6—C5122.8 (8)C9—C8—C13121.0 (8)
C4—C5—C6114.7 (9)C9—C8—N4130.0 (7)
C4—C5—H5122.7C13—C8—N4109.0 (7)
C6—C5—H5122.7N1—C1—C6109.6 (7)
C2—C3—C4121.5 (9)N1—C1—C2130.1 (8)
C2—C3—H3119.2C6—C1—C2120.2 (8)
C4—C3—H3119.2N2—N1—C1107.8 (7)
N5i—Cd1—N5—C732 (100)N2i—Cd1—O1—C1459.3 (13)
O1i—Cd1—N5—C793.0 (6)C1—C6—N3—N20.3 (9)
O1—Cd1—N5—C787.0 (6)C5—C6—N3—N2177.3 (9)
N2—Cd1—N5—C73.5 (6)C1—C6—N3—C7180.0 (8)
N2i—Cd1—N5—C7176.5 (6)C5—C6—N3—C72.4 (15)
N5i—Cd1—N5—C13158 (100)N1—N2—N3—C60.1 (9)
O1i—Cd1—N5—C1397.4 (8)Cd1—N2—N3—C6173.1 (5)
O1—Cd1—N5—C1382.6 (8)N1—N2—N3—C7179.6 (7)
N2—Cd1—N5—C13173.2 (8)Cd1—N2—N3—C76.6 (8)
N2i—Cd1—N5—C136.8 (8)N4—C7—N3—C67.9 (13)
C8—N4—C7—N50.4 (9)N5—C7—N3—C6169.3 (8)
C8—N4—C7—N3177.7 (7)N4—C7—N3—N2172.5 (7)
C13—N5—C7—N41.5 (10)N5—C7—N3—N210.3 (11)
Cd1—N5—C7—N4174.0 (5)Cd1—O1—C14—C1533 (2)
C13—N5—C7—N3178.8 (7)C4—C3—C2—C12.2 (15)
Cd1—N5—C7—N38.6 (10)C8—C13—C12—C111.5 (13)
N5i—Cd1—N2—N18.7 (10)N5—C13—C12—C11178.0 (9)
N5—Cd1—N2—N1171.3 (10)C8—C9—C10—C111.7 (15)
O1i—Cd1—N2—N174.5 (10)C13—C12—C11—C100.3 (15)
O1—Cd1—N2—N1105.5 (10)C9—C10—C11—C120.4 (17)
N2i—Cd1—N2—N1130 (100)C10—C9—C8—C132.8 (13)
N5i—Cd1—N2—N3178.2 (5)C10—C9—C8—N4179.3 (9)
N5—Cd1—N2—N31.8 (5)N5—C13—C8—C9180.0 (8)
O1i—Cd1—N2—N395.1 (5)C12—C13—C8—C92.8 (13)
O1—Cd1—N2—N384.9 (5)N5—C13—C8—N41.7 (9)
N2i—Cd1—N2—N339 (100)C12—C13—C8—N4178.9 (8)
C3—C4—C5—C60.5 (15)C7—N4—C8—C9178.9 (9)
N3—C6—C5—C4176.7 (9)C7—N4—C8—C130.8 (9)
C1—C6—C5—C40.6 (13)N3—C6—C1—N10.7 (9)
C5—C4—C3—C22.1 (17)C5—C6—C1—N1177.3 (8)
C7—N5—C13—C81.9 (9)N3—C6—C1—C2177.6 (8)
Cd1—N5—C13—C8172.8 (6)C5—C6—C1—C20.4 (13)
C7—N5—C13—C12178.7 (9)C3—C2—C1—N1175.1 (9)
Cd1—N5—C13—C1210.3 (14)C3—C2—C1—C61.1 (14)
N5i—Cd1—O1—C1411.6 (13)N3—N2—N1—C10.5 (10)
N5—Cd1—O1—C14168.4 (13)Cd1—N2—N1—C1170.1 (7)
O1i—Cd1—O1—C14110 (100)C6—C1—N1—N20.7 (10)
N2—Cd1—O1—C14120.7 (13)C2—C1—N1—N2177.2 (9)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4ii0.85 (1)1.98 (5)2.787 (9)159 (12)
Symmetry code: (ii) x, y, z+1.
Selected bond lengths (Å) top
Cd1—O12.414 (7)Cd1—N52.180 (6)
Cd1—N22.494 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.848 (10)1.98 (5)2.787 (9)159 (12)
Symmetry code: (i) x, y, z+1.
Acknowledgements top

The work was supported by the National Natural Science Foundation of China (Nos. 20871099 and J0730425) and Gansu Provincial Natural Science Foundation of China (No. 0710RJZA113).

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, J., Yang, J. & Pan, F. (2009). Acta Cryst. E65, m829.

Zaworotko, M. J. (1994). Chem. Soc. Rev. pp. 283–288.

Zhou, J.-H., Li, X.-G., Zhang, Y.-M., Li, B.-L. & Zhang, Y. (2006). J. Mol. Struct. 788, 194–199.