supplementary materials


bt6894 scheme

Acta Cryst. (2013). E69, m205-m206    [ doi:10.1107/S1600536813006442 ]

cis-Chlorido(methylamine)bis(propane-1,3-diamine)cobalt(III) dichloride monohydrate

V. Maheshwaran, M. Manjunathan, K. Anbalagan, V. Thiruselvam and M. N. Ponnuswamy

Abstract top

In the title compound, [CoCl(CH5N)(C3H10N2)2]Cl2·H2O, the CoIII ion has an octahedral coordination environment and is surrounded by four N atoms of two propane-1,3-diamine ligands in the equatorial plane, with another N atom of the methylamine ligand and a Cl atom occupying the axial positions. The crystal packing is stabilized by intermolecular N-H...O, N-H...Cl, and O-H...Cl interactions, generating a three-dimensional network.

Comment top

The interest in understanding the outer-sphere electron-transfer (OSET) reactions of transition metal complexes in mixed solvents has increased significantly in recent years. It was established that the method of linear solvation energy relationship (LSER) is a generalized treatment of solvation effects and can very well be used to understand the influence of solvent on reaction rates (Anbalagan et al., 2003). The present research is the design and synthesis of cobalt(III) complexes with an objective to understand the structure-reactivity correlation. Substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron transfer rate (Anbalagan, 2011; Anbalagan et al., 2011).

Such complexes can offer a clear correlation between structure and spectral characteristics, reactions in particular. The optical properties and mechanism of electron transfer reaction can be understood through the structure of these complexes.

In addition cobalt(III) complexes have received a sustained high level of attention due to their relevance in various redox processes in biological systems and act as promising agents for antitumor, anthelmintic, antiparasitic, antibiotics and antimicrobial activities, as well as their multiple applications in fields such as medicine and drug delivery (Chang et al.,2010). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The molecular structure is symmetric with respect to cobalt, the CoIII ion has an octahedral coordination environment and is surrounded by four N atoms in an equatorial plane, with the other N and Cl atoms occupying the axial positions. The bond lengths [Co—N] and [Co—Cl] are comparable with the values reported in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al., 2009).

The packing of the molecules viewed down a axis is shown in Fig. 2. The molecules are stabilized by N—H···Cl, N—H···O and O—H···Cl intermolecular interactions generating a three-dimensional network.

Related literature top

For the linear solvation energy relationship (LSER) method, see: Anbalagan (2011); Anbalagan et al. (2003, 2011). For the biological properties of cobalt(III) complexes, see: Chang et al. (2010). For related structures, see: Anbalagan et al. (2009); Lee et al. (2007); Ramesh et al. (2008); Ravichandran et al. (2009). For the preparation of (1,3-diaminopropane)cobalt(III), see: Bailar & Work (1946).

Experimental top

Two grams of trans-[CoIII(tn)2Cl2]Cl solid was made in to paste using 3–4 drops of water. To the solid mass, about 0.12M methyl amine (MeNH2) was added in drops for 20 min and mixed by grinding (Bailar & Work 1946). The grinding of the resulting dull green paste was continued to obtain red mass. The reaction mixture was set aside until no further change occurred and the product was allowed to stand overnight. Finally, the solid was washed and recrystallized using acidified water pre-heated to 70°C. The pure crystals were filtered, washed with ethanol and dried over vacuum. The microcrystalline solid obtained was pink colored and the yield was estimated to be 0.85 g (85%). X-ray quality crystals were grown after repeated recrystallization and using hot acidified water.

Refinement top

N and C-bound H atoms were positioned geometrically (N–H =0.90 Å, C–H =0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for all other H atoms. The water H atoms were freely refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules viewed down a axis.
cis-Chlorido(methylamine)bis(propane-1,3-diamine)cobalt(III) dichloride monohydrate top
Crystal data top
[CoCl(CH5N)(C3H10N2)2]Cl2·H2OZ = 2
Mr = 362.62F(000) = 380
Triclinic, P1Dx = 1.534 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4752 (6) ÅCell parameters from 2764 reflections
b = 7.9065 (6) Åθ = 2.8–25.0°
c = 14.4663 (13) ŵ = 1.60 mm1
α = 76.022 (6)°T = 292 K
β = 76.907 (7)°Block, violet
γ = 73.779 (4)°0.35 × 0.35 × 0.35 mm
V = 784.96 (11) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2764 independent reflections
Radiation source: Enhance(Mo)X-ray Source2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 88
Tmin = 0.798, Tmax = 1.000k = 69
5020 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0217P)2]
where P = (Fo2 + 2Fc2)/3
2764 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[CoCl(CH5N)(C3H10N2)2]Cl2·H2Oγ = 73.779 (4)°
Mr = 362.62V = 784.96 (11) Å3
Triclinic, P1Z = 2
a = 7.4752 (6) ÅMo Kα radiation
b = 7.9065 (6) ŵ = 1.60 mm1
c = 14.4663 (13) ÅT = 292 K
α = 76.022 (6)°0.35 × 0.35 × 0.35 mm
β = 76.907 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2071 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Rint = 0.027
Tmin = 0.798, Tmax = 1.000θmax = 25.0°
5020 measured reflectionsStandard reflections: 0
2764 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Δρmax = 0.32 e Å3
S = 0.92Δρmin = 0.28 e Å3
2764 reflectionsAbsolute structure: ?
162 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3821 (4)0.4046 (4)0.7738 (2)0.0358 (7)
H1A0.45130.49430.73850.043*
H1B0.30860.44440.83240.043*
C20.2490 (4)0.3907 (4)0.7126 (2)0.0367 (7)
H2A0.19120.29120.74410.044*
H2B0.14900.49970.70740.044*
C30.3492 (4)0.3631 (4)0.61316 (19)0.0346 (7)
H3A0.25610.37840.57290.042*
H3B0.42050.45400.58500.042*
C40.8945 (4)0.1858 (4)0.8474 (2)0.0381 (7)
H4A0.97550.19100.89220.046*
H4B0.95720.27800.80920.046*
C50.7081 (4)0.2246 (4)0.90423 (19)0.0368 (7)
H5A0.73310.32730.95610.044*
H5B0.63470.12230.93310.044*
C60.5945 (4)0.2629 (4)0.84015 (19)0.0328 (7)
H6A0.67290.35730.80640.039*
H6B0.48730.30570.88040.039*
C70.8086 (4)0.2353 (4)0.5976 (2)0.0394 (8)
H7A0.90100.27690.54490.059*
H7B0.68420.22590.58630.059*
H7C0.82990.31880.65670.059*
N10.5177 (3)0.2334 (3)0.80003 (14)0.0256 (5)
H1C0.45340.16360.84640.031*
H1D0.60200.25730.82770.031*
N20.4793 (3)0.1835 (3)0.61329 (15)0.0243 (5)
H2C0.54520.18370.55290.029*
H2D0.40700.10450.62400.029*
N30.5246 (3)0.1013 (3)0.76779 (14)0.0226 (5)
H3C0.41240.04370.79710.027*
H3D0.49990.14260.72040.027*
N40.8692 (3)0.0082 (3)0.78236 (15)0.0273 (5)
H4C0.97920.00750.74120.033*
H4D0.85490.07320.81910.033*
N50.8253 (3)0.0572 (3)0.60532 (14)0.0251 (5)
H5C0.81200.01390.54730.030*
H5D0.94560.07150.61210.030*
O10.2225 (3)0.0443 (4)0.91094 (19)0.0487 (6)
Cl10.81500 (9)0.30498 (10)0.62727 (5)0.03471 (19)
Cl20.81288 (10)0.28479 (10)0.92550 (5)0.0405 (2)
Cl30.27376 (8)0.14018 (9)0.61638 (5)0.02962 (18)
Co10.66519 (4)0.08437 (5)0.70286 (3)0.01944 (10)
H1E0.208 (5)0.031 (5)0.960 (3)0.085 (16)*
H1F0.112 (5)0.118 (5)0.915 (2)0.074 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (17)0.0269 (19)0.038 (2)0.0020 (14)0.0084 (14)0.0098 (15)
C20.0274 (15)0.035 (2)0.0400 (19)0.0078 (13)0.0095 (13)0.0063 (15)
C30.0406 (17)0.0266 (19)0.0338 (19)0.0012 (14)0.0166 (14)0.0013 (15)
C40.0400 (17)0.036 (2)0.039 (2)0.0008 (14)0.0218 (14)0.0033 (16)
C50.0546 (19)0.030 (2)0.0233 (17)0.0063 (15)0.0166 (14)0.0051 (14)
C60.0447 (17)0.0234 (18)0.0310 (18)0.0128 (14)0.0097 (13)0.0023 (14)
C70.0360 (16)0.039 (2)0.047 (2)0.0105 (15)0.0020 (14)0.0226 (16)
N10.0262 (12)0.0290 (15)0.0244 (13)0.0090 (11)0.0051 (10)0.0071 (11)
N20.0257 (11)0.0249 (15)0.0224 (13)0.0057 (10)0.0058 (9)0.0036 (11)
N30.0265 (11)0.0235 (14)0.0193 (13)0.0077 (10)0.0049 (9)0.0040 (11)
N40.0233 (11)0.0304 (16)0.0291 (14)0.0042 (10)0.0070 (10)0.0077 (12)
N50.0210 (11)0.0279 (15)0.0254 (13)0.0042 (10)0.0043 (9)0.0047 (11)
O10.0358 (14)0.0492 (18)0.0457 (16)0.0074 (12)0.0087 (11)0.0023 (13)
Cl10.0364 (4)0.0318 (5)0.0377 (5)0.0194 (3)0.0022 (3)0.0007 (4)
Cl20.0464 (4)0.0318 (5)0.0444 (5)0.0038 (4)0.0175 (4)0.0069 (4)
Cl30.0260 (4)0.0332 (5)0.0315 (4)0.0087 (3)0.0089 (3)0.0039 (3)
Co10.01893 (18)0.0188 (2)0.0209 (2)0.00540 (15)0.00410 (14)0.00248 (16)
Geometric parameters (Å, º) top
C1—N11.471 (3)C7—H7A0.9600
C1—C21.514 (3)C7—H7B0.9600
C1—H1A0.9700C7—H7C0.9600
C1—H1B0.9700N1—Co11.988 (2)
C2—C31.500 (4)N1—H1C0.9000
C2—H2A0.9700N1—H1D0.9000
C2—H2B0.9700N2—Co11.9854 (19)
C3—N21.480 (3)N2—H2C0.9000
C3—H3A0.9700N2—H2D0.9000
C3—H3B0.9700N3—Co11.9722 (18)
C4—N41.478 (3)N3—H3C0.9000
C4—C51.520 (4)N3—H3D0.9000
C4—H4A0.9700N4—Co11.987 (2)
C4—H4B0.9700N4—H4C0.9000
C5—C61.519 (3)N4—H4D0.9000
C5—H5A0.9700N5—Co11.9815 (19)
C5—H5B0.9700N5—H5C0.9000
C6—N31.493 (3)N5—H5D0.9000
C6—H6A0.9700O1—H1E0.82 (4)
C6—H6B0.9700O1—H1F0.87 (4)
C7—N51.480 (3)Cl1—Co12.2599 (7)
N1—C1—C2112.7 (2)Co1—N1—H1C106.8
N1—C1—H1A109.0C1—N1—H1D106.8
C2—C1—H1A109.0Co1—N1—H1D106.8
N1—C1—H1B109.0H1C—N1—H1D106.7
C2—C1—H1B109.0C3—N2—Co1121.69 (15)
H1A—C1—H1B107.8C3—N2—H2C106.9
C3—C2—C1111.9 (2)Co1—N2—H2C106.9
C3—C2—H2A109.2C3—N2—H2D106.9
C1—C2—H2A109.2Co1—N2—H2D106.9
C3—C2—H2B109.2H2C—N2—H2D106.7
C1—C2—H2B109.2C6—N3—Co1124.59 (14)
H2A—C2—H2B107.9C6—N3—H3C106.2
N2—C3—C2112.7 (2)Co1—N3—H3C106.2
N2—C3—H3A109.1C6—N3—H3D106.2
C2—C3—H3A109.1Co1—N3—H3D106.2
N2—C3—H3B109.1H3C—N3—H3D106.4
C2—C3—H3B109.1C4—N4—Co1122.49 (15)
H3A—C3—H3B107.8C4—N4—H4C106.7
N4—C4—C5112.6 (2)Co1—N4—H4C106.7
N4—C4—H4A109.1C4—N4—H4D106.7
C5—C4—H4A109.1Co1—N4—H4D106.7
N4—C4—H4B109.1H4C—N4—H4D106.6
C5—C4—H4B109.1C7—N5—Co1124.77 (16)
H4A—C4—H4B107.8C7—N5—H5C106.1
C6—C5—C4111.5 (2)Co1—N5—H5C106.1
C6—C5—H5A109.3C7—N5—H5D106.1
C4—C5—H5A109.3Co1—N5—H5D106.1
C6—C5—H5B109.3H5C—N5—H5D106.3
C4—C5—H5B109.3H1E—O1—H1F102 (3)
H5A—C5—H5B108.0N3—Co1—N593.88 (8)
N3—C6—C5112.6 (2)N3—Co1—N288.79 (8)
N3—C6—H6A109.1N5—Co1—N287.65 (8)
C5—C6—H6A109.1N3—Co1—N495.58 (8)
N3—C6—H6B109.1N5—Co1—N489.08 (9)
C5—C6—H6B109.1N2—Co1—N4174.72 (8)
H6A—C6—H6B107.8N3—Co1—N189.21 (8)
N5—C7—H7A109.5N5—Co1—N1176.46 (7)
N5—C7—H7B109.5N2—Co1—N194.16 (8)
H7A—C7—H7B109.5N4—Co1—N188.88 (8)
N5—C7—H7C109.5N3—Co1—Cl1177.67 (7)
H7A—C7—H7C109.5N5—Co1—Cl187.31 (6)
H7B—C7—H7C109.5N2—Co1—Cl189.26 (6)
C1—N1—Co1122.04 (16)N4—Co1—Cl186.43 (6)
C1—N1—H1C106.8N1—Co1—Cl189.67 (6)
N1—C1—C2—C369.3 (3)C7—N5—Co1—N497.9 (2)
C1—C2—C3—N269.8 (3)C7—N5—Co1—Cl1175.7 (2)
N4—C4—C5—C672.5 (3)C3—N2—Co1—N3113.74 (19)
C4—C5—C6—N367.9 (3)C3—N2—Co1—N5152.33 (19)
C2—C1—N1—Co148.1 (3)C3—N2—Co1—N124.62 (19)
C2—C3—N2—Co149.0 (3)C3—N2—Co1—Cl164.99 (18)
C5—C6—N3—Co135.5 (3)C4—N4—Co1—N311.6 (2)
C5—C4—N4—Co142.6 (3)C4—N4—Co1—N582.2 (2)
C6—N3—Co1—N581.2 (2)C4—N4—Co1—N1100.7 (2)
C6—N3—Co1—N2168.8 (2)C4—N4—Co1—Cl1169.5 (2)
C6—N3—Co1—N48.2 (2)C1—N1—Co1—N3113.12 (18)
C6—N3—Co1—N197.0 (2)C1—N1—Co1—N224.39 (19)
C7—N5—Co1—N32.3 (2)C1—N1—Co1—N4151.28 (19)
C7—N5—Co1—N286.3 (2)C1—N1—Co1—Cl164.84 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.902.122.960 (3)155
N1—H1D···Cl20.902.433.317 (2)170
N2—H2C···Cl3i0.902.573.462 (2)172
N2—H2D···Cl30.902.443.3196 (19)164
N3—H3C···O10.902.042.880 (3)155
N3—H3D···Cl30.902.503.3041 (18)149
N4—H4C···Cl3ii0.902.653.486 (2)155
N4—H4D···Cl20.902.453.348 (2)177
N5—H5C···Cl3i0.902.493.359 (2)162
N5—H5D···Cl3ii0.902.373.2649 (19)172
O1—H1E···Cl2iii0.82 (4)2.29 (4)3.093 (3)168 (4)
O1—H1F···Cl2iv0.87 (4)2.25 (4)3.112 (3)174 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.90002.12002.960 (3)155.00
N1—H1D···Cl20.90002.43003.317 (2)170.00
N2—H2C···Cl3i0.902.573.462 (2)172.0
N2—H2D···Cl30.902.443.3196 (19)164.3
N3—H3C···O10.90002.04002.880 (3)155.00
N3—H3D···Cl30.902.503.3041 (18)149.2
N4—H4C···Cl3ii0.902.653.486 (2)154.7
N4—H4D···Cl20.90002.45003.348 (2)177.00
N5—H5C···Cl3i0.902.493.359 (2)162.4
N5—H5D···Cl3ii0.902.373.2649 (19)171.9
O1—H1E···Cl2iii0.82 (4)2.29 (4)3.093 (3)168 (4)
O1—H1F···Cl2iv0.87 (4)2.25 (4)3.112 (3)174 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+2; (iv) x1, y, z.
Acknowledgements top

KA is thankful to the CSIR, New Delhi (Lr. No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are thankful to Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

references
References top

Anbalagan, K. (2011). J. Phys. Chem. C115, 3821–3832.

Anbalagan, K., Geethalakshmi, T. & Poonkodi, S. P. R. (2003). J. Phys. Chem. A, 107, 1918–1927.

Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52.

Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.

Bailar, J. C. & Work, J. B. (1946). J. Am. Chem. Soc. 68, 232–235.

Chang, E. L., Simmers, C. & Andrew Knight, D. (2010). Pharmaceuticals, 3, 1711–1728.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.

Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.

Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.