supplementary materials


cq2002 scheme

Acta Cryst. (2013). E69, m209    [ doi:10.1107/S1600536813006703 ]

cis-Dichloridobis(ethyl methyl sulfide-[kappa]S)oxidovanadium(IV)

M. Matsuura, T. Fujihara and A. Nagasawa

Abstract top

The mononuclear title complex, [VCl2O(C3H8S)2], features a VIV=O double bond [1.5845 (15) Å] in an overall trigonal-bipyramidal coordination environment defined by two Cl- and the S atoms of two (CH3CH2)(CH3)S ligands. In the crystal, pairs of molecules form centrosymmetric dimers via C-H...O hydrogen bonds between the methyl C-H group and the oxidovanadium O atom of a neighbouring molecule.

Comment top

The chemistry of the higher oxidation states of vanadium with neutral thioether ligands in discrete complexes remains relatively unexplored due to the instability of such complexes. Our research group has already carried out X-ray crystallographic determinations of lower oxidation state niobium complexes of the general formula [Nb2Cl6L12L2] (L1= L2= tetrahydrothiophene C4H8S (THT) (Kakeya, Fujihara, Kasaya et al., 2006) and dimethyl sulfide C2H6S (Kakeya, Fujihara & Nagasawa, 2006)) and (L1 = dimethyl selenide C2H6Se, L2 = C2H6S) (Matsuura et al., 2012). We report here the structure of [VOCl2(C3H8S)2] (I, Scheme I). The molecule has two Cl- and two EtMeS ligands (Fig. 1). Crystal structures have been reported for trigonal bipyramidal complexes formed when the water ligands in [VOCl2(H2O)2] are replaced by 8-hydroxyquinolinium chloride (Takano et al., 2009), bis(2-(2-pyridylamino)pyridinium) dichloride (Hartung et al., 2005), diethyl ether (Papoutsakis et al., 2004) and benzo-15-crown-5 (Azuma et al., 1994). The only trigonal bipyramidal complex containing S2- reported to date is [VOCl2(thiourea)2] (II, Bristow et al., 1989). In complex I, the O atom and two Cl- ligands occupy the equatorial positions and the two EtMeS ligands the axial positions of a distorted trigonal bipyramid. The S2—V1—S1 angle of 166.66 (2) o deviates from the ideal value of 180 o. The steric bulkness of the EtMeS ligand may be responsible for controlling the structure. The V—S distances, 2.4803 (9) and 2.4858 (9) Å, in our complex are slightly longer than that of 2.424 (1) Å in II. The average V—Cl distance and other geometrical parameters fall within the range of those in II. In the crystal, pairs of molecules form centrosymmetric R22(10) dimers (Bernstein et al., 1995) via C—H···O hydrogen bonds between the methyl C—H group and the O atom of oxidovanadium in a neighboring molecule (Fig. 2).

Related literature top

For related structures, see: Azuma et al. (1994); Bristow et al. (1989); Hartung et al. (2005); Kakeya, Fujihara, Kasaya et al. (2006); Kakeya, Fujihara & Nagasawa (2006); Matsuura et al. (2012); Papoutsakis et al. (2004); Takano et al. (2009). For hydrogen-bonded motifs, see: Bernstein et al. (1995).

Experimental top

All the reactions were carried out under a dry argon atmosphere by using standard Schlenk tube techniques. Vanadium trichloride, VCl3 (1.0 g, 6.4 mmol), was suspended in CH2Cl2 (40 mL), and ethylmethyl sulfide (C3H8S, 1.7 mL, 19 mmol) added to the solution at room temperature. The mixture was stirred at room temperature for 2 d, during which time, a purple precipitate, probably of residual starting material, was generated gradually. This was removed by filtration. The resultant filtrate was concentrated to 5 mL before the addition of n-hexane (10 mL). The solution was then set aside in a freezer at 255 K. After several days, blue crystals grew in the solution. The product was too reactive with liquid water to exist at temperatures higher than 273 K even in solvent under an Ar atmosphere.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.98 (methyl) and 0.99 (methylene) Å , and refined using a riding model, with Uiso(H) = 1.5.(methyl) and 1.2 Ueq (methylene).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the complex (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Centrosymmetric dimer of two molecules of the title compound (I) connected by mutual C—H···O hydrogen bonds (symmetry code = 1 - x, -y, 2 - z).
cis-Dichloridobis(ethyl methyl sulfide-κS)oxidovanadium(IV) top
Crystal data top
[VCl2O(C3H8S)2]F(000) = 596
Mr = 290.15Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3238 reflections
a = 10.503 (3) Åθ = 2.5–27.0°
b = 10.386 (3) ŵ = 1.46 mm1
c = 11.890 (4) ÅT = 150 K
β = 93.484 (3)°Block, blue
V = 1294.6 (7) Å30.15 × 0.13 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2646 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode2125 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.059
Detector resolution: 8.333 pixels mm-1θmax = 26.4°, θmin = 2.5°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1212
Tmin = 0.811, Tmax = 0.856l = 1414
13449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
2646 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[VCl2O(C3H8S)2]V = 1294.6 (7) Å3
Mr = 290.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.503 (3) ŵ = 1.46 mm1
b = 10.386 (3) ÅT = 150 K
c = 11.890 (4) Å0.15 × 0.13 × 0.11 mm
β = 93.484 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2646 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2125 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.856Rint = 0.059
13449 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.36 e Å3
S = 1.24Δρmin = 0.37 e Å3
2646 reflectionsAbsolute structure: ?
113 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.29967 (3)0.19666 (4)0.98439 (3)0.02823 (12)
Cl10.08892 (5)0.14880 (7)0.95318 (5)0.0513 (2)
Cl20.38968 (6)0.37705 (6)1.06207 (5)0.04726 (18)
S10.27796 (5)0.11532 (6)1.17891 (4)0.03144 (15)
S20.28225 (5)0.31343 (6)0.80213 (5)0.03179 (15)
C10.4391 (2)0.1050 (2)1.24240 (17)0.0361 (6)
H1A0.49320.05861.19050.043*
H1B0.47400.19311.25270.043*
C20.4459 (2)0.0369 (3)1.35491 (17)0.0464 (7)
H2A0.39010.08051.40590.070*
H2B0.53390.03861.38740.070*
H2C0.41820.05261.34440.070*
C30.2416 (2)0.0523 (2)1.15743 (19)0.0467 (6)
H3A0.31050.09351.11860.070*
H3B0.16130.06071.11150.070*
H3C0.23320.09411.23050.070*
C40.4450 (2)0.3479 (3)0.7720 (2)0.0492 (7)
H4A0.49420.26770.77320.074*
H4B0.48260.40700.82910.074*
H4C0.44680.38780.69740.074*
C50.2422 (2)0.1881 (2)0.70034 (18)0.0392 (6)
H5A0.30710.11900.70850.047*
H5B0.15880.15030.71690.047*
C60.2351 (3)0.2359 (3)0.5799 (2)0.0544 (7)
H6A0.17370.30680.57180.082*
H6B0.20750.16550.52920.082*
H6C0.31940.26620.56060.082*
O10.39676 (14)0.09120 (15)0.94548 (12)0.0415 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.02533 (19)0.0281 (2)0.0312 (2)0.00192 (16)0.00131 (15)0.00101 (16)
Cl10.0309 (3)0.0701 (5)0.0518 (4)0.0170 (3)0.0072 (3)0.0221 (3)
Cl20.0595 (4)0.0392 (4)0.0433 (3)0.0187 (3)0.0047 (3)0.0057 (3)
S10.0290 (3)0.0353 (4)0.0302 (3)0.0030 (3)0.0034 (2)0.0008 (2)
S20.0319 (3)0.0292 (4)0.0345 (3)0.0001 (3)0.0044 (2)0.0039 (2)
C10.0298 (11)0.0464 (16)0.0317 (12)0.0050 (11)0.0007 (9)0.0011 (11)
C20.0441 (14)0.0599 (19)0.0344 (13)0.0017 (13)0.0029 (11)0.0058 (12)
C30.0614 (16)0.0385 (16)0.0391 (14)0.0180 (13)0.0068 (12)0.0046 (12)
C40.0378 (14)0.0590 (19)0.0517 (15)0.0153 (13)0.0097 (12)0.0001 (13)
C50.0410 (13)0.0388 (16)0.0376 (13)0.0033 (11)0.0019 (11)0.0036 (11)
C60.0561 (16)0.070 (2)0.0371 (14)0.0027 (15)0.0041 (12)0.0044 (13)
O10.0471 (9)0.0402 (11)0.0374 (9)0.0140 (8)0.0031 (7)0.0023 (7)
Geometric parameters (Å, º) top
V1—O11.5845 (15)C2—H2C0.9800
V1—Cl22.2695 (9)C3—H3A0.9800
V1—Cl12.2769 (9)C3—H3B0.9800
V1—S22.4803 (9)C3—H3C0.9800
V1—S12.4858 (9)C4—H4A0.9800
S1—C31.797 (3)C4—H4B0.9800
S1—C11.814 (2)C4—H4C0.9800
S2—C41.804 (2)C5—C61.513 (3)
S2—C51.810 (2)C5—H5A0.9900
C1—C21.511 (3)C5—H5B0.9900
C1—H1A0.9900C6—H6A0.9800
C1—H1B0.9900C6—H6B0.9800
C2—H2A0.9800C6—H6C0.9800
C2—H2B0.9800
O1—V1—Cl2115.47 (7)H2A—C2—H2C109.5
O1—V1—Cl1115.97 (7)H2B—C2—H2C109.5
Cl2—V1—Cl1128.56 (3)S1—C3—H3A109.5
O1—V1—S295.60 (6)S1—C3—H3B109.5
Cl2—V1—S287.64 (3)H3A—C3—H3B109.5
Cl1—V1—S286.85 (2)S1—C3—H3C109.5
O1—V1—S197.69 (6)H3A—C3—H3C109.5
Cl2—V1—S187.79 (3)H3B—C3—H3C109.5
Cl1—V1—S186.23 (2)S2—C4—H4A109.5
S2—V1—S1166.66 (2)S2—C4—H4B109.5
C3—S1—C1100.77 (12)H4A—C4—H4B109.5
C3—S1—V1103.16 (8)S2—C4—H4C109.5
C1—S1—V1105.74 (7)H4A—C4—H4C109.5
C4—S2—C5101.24 (11)H4B—C4—H4C109.5
C4—S2—V1104.47 (9)C6—C5—S2113.16 (18)
C5—S2—V1103.56 (8)C6—C5—H5A108.9
C2—C1—S1112.89 (15)S2—C5—H5A108.9
C2—C1—H1A109.0C6—C5—H5B108.9
S1—C1—H1A109.0S2—C5—H5B108.9
C2—C1—H1B109.0H5A—C5—H5B107.8
S1—C1—H1B109.0C5—C6—H6A109.5
H1A—C1—H1B107.8C5—C6—H6B109.5
C1—C2—H2A109.5H6A—C6—H6B109.5
C1—C2—H2B109.5C5—C6—H6C109.5
H2A—C2—H2B109.5H6A—C6—H6C109.5
C1—C2—H2C109.5H6B—C6—H6C109.5
O1—V1—S1—C351.05 (11)Cl1—V1—S2—C4168.84 (9)
Cl2—V1—S1—C3166.45 (9)S1—V1—S2—C4132.35 (13)
Cl1—V1—S1—C364.67 (9)O1—V1—S2—C552.59 (10)
S2—V1—S1—C3123.54 (13)Cl2—V1—S2—C5167.95 (8)
O1—V1—S1—C154.33 (10)Cl1—V1—S2—C563.22 (8)
Cl2—V1—S1—C161.07 (9)S1—V1—S2—C5122.02 (13)
Cl1—V1—S1—C1170.05 (9)C3—S1—C1—C263.62 (19)
S2—V1—S1—C1131.08 (13)V1—S1—C1—C2170.74 (16)
O1—V1—S2—C453.04 (11)C4—S2—C5—C668.07 (19)
Cl2—V1—S2—C462.33 (9)V1—S2—C5—C6176.14 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.992.573.547 (3)170
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.992.573.547 (3)170.2
Symmetry code: (i) x+1, y, z+2.
Acknowledgements top

This work has been supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.

references
References top

Azuma, N., Ozawa, T. & Ishizu, K. (1994). Polyhedron, 13, 1715–1723.

Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bristow, S., McAvilley, S. C. M., Clegg, W. & Collison, D. (1989). Polyhedron, 8, 87–90.

Bruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hartung, J., Schmidt, P., Svoboda, I. & Fuess, H. (2005). Acta Cryst. E61, m1253–m1255.

Kakeya, M., Fujihara, T., Kasaya, T. & Nagasawa, A. (2006). Organometallics, 25, 4131–4137.

Kakeya, M., Fujihara, T. & Nagasawa, A. (2006). Acta Cryst. E62, m553–m554.

Matsuura, M., Fujihara, T., Nagasawa, A. & Ng, S. W. (2012). Acta Cryst. E68, m1166.

Papoutsakis, D., Ichimura, A. S., Young Junior, V. G. E., Jackson, J. D. & Nocera, G. (2004). J. Chem. Soc. Dalton Trans. pp. 224–228.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Takano, K., Sunatsuki, Y., Kojima, M., Kinoshita, I. & Shibahara, T. (2009). Inorg. Chim. Acta, 362, 3201–3207.