organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-7-meth­­oxy-2-phenyl­imidazo[2,1-b][1,3]benzo­thia­zole

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya Street, Togliatti 445667, Russian Federation, bDepartment of Bio­organic and Medicinal Chemistry, Samara State University, 1 Academika Pavlova Street, Samara 443011, Russian Federation, and cX-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 3 March 2013; accepted 7 March 2013; online 13 March 2013)

In the title mol­ecule, C16H11BrN2OS, the central imidazo[2,1-b][1,3]benzothia­zole tricycle is essentially planar (r.m.s. deviation = 0.021 Å). The terminal phenyl ring is twisted at 36.18 (5)° from the mean plane of the tricycle. In the crystal, pairs of eak C—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers, which are further packed into stacks along the a axis.

Related literature

For applications of imidazo[2,1-b][1,3]benzothia­zoles, see: Mase et al. (1988[Mase, T., Arima, H., Tomioka, K., Yamada, T. & Murase, K. (1988). Eur. J. Med. Chem. 23, 335-339.]); Ager et al. (1988[Ager, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098-1115.]); Barchéchath et al. (2005[Barchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409-6422.]); Kumbhare et al. (2011[Kumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258-4266.]); Yousefi et al. (2011[Yousefi, B. H., Drzezga, F., Reutern, B., Manook, A., Schwaiger, H. M., Wester, H. J. & Henriksen, G. (2011). ACS Med. Chem. Lett. 2, 673-677.]); Chandak et al. (2013[Chandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203-208.]). For the crystal structures of related compounds, see: Landreau et al. (2002[Landreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741-745.]); Adib et al. (2008[Adib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941-2944.]); Fun, Asik et al. (2011[Fun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.]); Fun, Hemamalini et al. (2011[Fun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265-o3266.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrN2OS

  • Mr = 359.24

  • Monoclinic, P 21 /n

  • a = 3.8346 (4) Å

  • b = 9.4848 (11) Å

  • c = 37.236 (4) Å

  • β = 91.810 (2)°

  • V = 1353.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.402, Tmax = 0.646

  • 17224 measured reflections

  • 3924 independent reflections

  • 3578 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.070

  • S = 1.00

  • 3924 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.56 3.465 (3) 158
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazo[2,1–b][1,3]benzothiazoles are of great interest due to their biological properties. These compounds and their derivatives demonstrate the immunosuppressive (Mase et al., 1988), antiallergic (Ager et al., 1988) and anti-cancer (Kumbhare et al., 2011) activities as well as the inhibition activity of apoptosis in testiculargerm cells (Chandak et al., 2013) and lymphocytes (Barchéchath et al., 2005). Moreover, the substituted imidazo[2,1–b][1,3]benzothiazoles have emerged as significant components in various diversified therapeutic applications. In particular, they are potential agents for High-Contrast PET Imaging (Yousefi et al., 2011). In this work, a new halogensubstituted imidazo[2,1-b][1,3]benzothiazole, C16H11N2OSBr, (I) was prepared by the reaction of imidazo[2,1–b][1,3]benzothiazole with bromine at room temperature (Figure 1), and its structure was unambiguously established by the X-ray diffraction study (Figure 2).

The bond lengths and angles within the molecule of I are in a good agreement with those found in the related compounds (Landreau et al., 2002; Adib et al., 2008; Fun, Asik et al., 2011; Fun, Hemamalini et al., 2011). The central imidazo[2,1–b][1,3]benzothiazole fragment is essentially planar (r.m.s. deviation is 0.021 Å). The methoxy group is practically coplanar to this fragment (the corresponding C6—C7—O1—C16 dihedral angle is 1.8 (3)°), and the terminal phenyl ring is twisted from it at 36.18 (5)°.

In the crystal, molecules form the centrosymmetrical dimers by the weak intermolecular C—H···O hydrogen bonds (Table 1, Figure 3). The dimers are further packed into stacks along the a axis.

Related literature top

For applications of imidazo[2,1-b][1,3]benzothiazoles, see: Mase et al. (1988); Ager et al. (1988); Barchéchath et al. (2005); Kumbhare et al. (2011); Yousefi et al. (2011); Chandak et al. (2013). For the crystal structures of related compounds, see: Landreau et al. (2002); Adib et al. (2008); Fun, Asik et al. (2011); Fun, Hemamalini et al. (2011).

Experimental top

A solution of bromine (0.51 ml, 1.6 g, 10 mmol) in dry CHCl3 (10 ml) was added to a solution of 7-methoxy-2-phenylimidazo[2,1-b][1,3]benzothiazole (2.80 g, 10 mmol) in dry CHCl3 (50 ml). The reaction mixture was stirred at room temperature for 3 h. The solvent was evaporated from the reaction mixture on rotavapor. The crude product was diluted with 5% solution of Na2CO3 in water (50 ml). The precipitate was filtered and crystallized from dimethylformamide. Yield is 89%. The single crystals of I were obtained by slow crystallization from dimethylformamide. M.p. = 447–448 K. IR (KBr), ν/cm-1: 2961, 1607, 1580, 1493, 1222, 684,633. 1H NMR (500 MHz, DMSO-d6, 303 K): δ = 8.31 (d, 1H, H5, J = 9.0), 7.95–8.01 (m, 2H, H2', H6'), 7.73 (d, 1H, H8, J = 2.8), 7.49 (t, 2H, H3', H5', J = 7.7), 7.38 (t, 1H, H4', J = 7.4), 7.17 (dd, 1H, H6, J = 9.0, J = 2.6), 3.85 (s, 3H, OCH3). Anal. Calcd. for C16H11BrN2OS: C, 53.49; H, 3.09; N, 7.8. Found: C, 53.45; H, 3.05; N, 7.75.

Refinement top

All hydrogen atoms were placed in the calculated positions, with C—H = 0.95 Å (CH-groups) and 0.98 Å (CH3-group), and refined in the riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction of imidazo[2,1-b][1,3]benzothiazoles with bromine.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A portion of the crystal structure showing the packing of the H-bonded centrosymmetrical dimers of I. The weak intermolecular C—H···O hydrogen bonds are drawn by dashed lines.
3-Bromo-7-methoxy-2-phenylimidazo[2,1-b][1,3]benzothiazole top
Crystal data top
C16H11BrN2OSF(000) = 720
Mr = 359.24Dx = 1.763 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9814 reflections
a = 3.8346 (4) Åθ = 2.2–30.5°
b = 9.4848 (11) ŵ = 3.19 mm1
c = 37.236 (4) ÅT = 100 K
β = 91.810 (2)°Needle, colourless
V = 1353.6 (3) Å30.35 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3924 independent reflections
Radiation source: fine-focus sealed tube3578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 55
Tmin = 0.402, Tmax = 0.646k = 1313
17224 measured reflectionsl = 5252
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0196P)2 + 2.89P]
where P = (Fo2 + 2Fc2)/3
3924 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
C16H11BrN2OSV = 1353.6 (3) Å3
Mr = 359.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8346 (4) ŵ = 3.19 mm1
b = 9.4848 (11) ÅT = 100 K
c = 37.236 (4) Å0.35 × 0.15 × 0.15 mm
β = 91.810 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3578 reflections with I > 2σ(I)
Tmin = 0.402, Tmax = 0.646Rint = 0.041
17224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
3924 reflectionsΔρmin = 0.95 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02456 (5)0.18794 (2)0.820287 (5)0.01435 (6)
O10.7765 (4)0.18472 (16)0.97119 (4)0.0169 (3)
N10.3136 (5)0.49917 (19)0.88973 (5)0.0132 (3)
C20.1687 (5)0.4553 (2)0.85658 (5)0.0128 (4)
C30.1626 (5)0.3103 (2)0.85500 (5)0.0132 (4)
N40.3079 (4)0.26156 (18)0.88734 (4)0.0114 (3)
C4A0.4010 (5)0.1337 (2)0.90429 (5)0.0108 (3)
C50.3563 (5)0.0040 (2)0.89273 (5)0.0122 (4)
H50.24470.02350.87010.015*
C60.4774 (5)0.1141 (2)0.91473 (6)0.0140 (4)
H60.44760.20910.90710.017*
C70.6429 (5)0.0847 (2)0.94802 (5)0.0123 (4)
C80.6842 (5)0.0541 (2)0.96019 (5)0.0131 (4)
H80.79290.07390.98290.016*
C8A0.5618 (5)0.1615 (2)0.93805 (5)0.0122 (4)
S90.59204 (13)0.34210 (5)0.947997 (13)0.01341 (10)
C9A0.3926 (5)0.3811 (2)0.90637 (5)0.0120 (4)
C100.0582 (5)0.5587 (2)0.82933 (5)0.0130 (4)
C110.0888 (5)0.6869 (2)0.83961 (6)0.0154 (4)
H110.12030.70570.86440.018*
C120.1889 (6)0.7866 (2)0.81419 (6)0.0192 (4)
H120.29040.87290.82160.023*
C130.1415 (6)0.7611 (2)0.77781 (6)0.0198 (4)
H130.20920.82980.76040.024*
C140.0052 (6)0.6347 (3)0.76713 (6)0.0189 (4)
H140.03740.61680.74230.023*
C150.1053 (5)0.5339 (2)0.79261 (6)0.0159 (4)
H150.20620.44770.78510.019*
C160.7532 (6)0.3284 (2)0.96000 (6)0.0161 (4)
H16A0.86560.38880.97830.024*
H16B0.87080.34000.93720.024*
H16C0.50730.35510.95680.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01465 (9)0.01602 (10)0.01221 (9)0.00152 (7)0.00252 (6)0.00246 (7)
O10.0232 (7)0.0110 (7)0.0161 (7)0.0009 (6)0.0046 (6)0.0000 (5)
N10.0148 (8)0.0134 (8)0.0114 (7)0.0011 (6)0.0001 (6)0.0007 (6)
C20.0129 (8)0.0144 (9)0.0111 (8)0.0006 (7)0.0002 (7)0.0001 (7)
C30.0132 (8)0.0143 (9)0.0121 (8)0.0011 (7)0.0012 (7)0.0025 (7)
N40.0121 (7)0.0119 (8)0.0102 (7)0.0002 (6)0.0009 (6)0.0007 (6)
C4A0.0097 (8)0.0134 (9)0.0091 (8)0.0004 (7)0.0005 (6)0.0004 (7)
C50.0109 (8)0.0141 (9)0.0116 (8)0.0005 (7)0.0015 (7)0.0014 (7)
C60.0130 (9)0.0117 (9)0.0171 (9)0.0011 (7)0.0006 (7)0.0016 (7)
C70.0120 (8)0.0138 (9)0.0111 (8)0.0003 (7)0.0004 (7)0.0018 (7)
C80.0136 (8)0.0149 (9)0.0107 (8)0.0020 (7)0.0001 (7)0.0007 (7)
C8A0.0114 (8)0.0125 (9)0.0127 (8)0.0008 (7)0.0001 (7)0.0015 (7)
S90.0176 (2)0.0104 (2)0.0120 (2)0.00075 (17)0.00341 (17)0.00098 (16)
C9A0.0124 (8)0.0129 (9)0.0106 (8)0.0018 (7)0.0006 (7)0.0020 (7)
C100.0109 (8)0.0157 (9)0.0125 (8)0.0019 (7)0.0016 (7)0.0012 (7)
C110.0148 (9)0.0150 (9)0.0163 (9)0.0012 (8)0.0001 (7)0.0002 (7)
C120.0168 (10)0.0143 (10)0.0262 (11)0.0000 (8)0.0028 (8)0.0027 (8)
C130.0168 (10)0.0213 (10)0.0210 (10)0.0025 (8)0.0032 (8)0.0092 (8)
C140.0186 (10)0.0250 (11)0.0130 (9)0.0025 (9)0.0020 (8)0.0044 (8)
C150.0130 (8)0.0184 (10)0.0164 (9)0.0005 (7)0.0005 (7)0.0031 (8)
C160.0188 (9)0.0112 (9)0.0182 (9)0.0008 (8)0.0022 (8)0.0009 (7)
Geometric parameters (Å, º) top
Br1—C31.864 (2)C8—H80.9500
O1—C71.371 (2)C8A—S91.756 (2)
O1—C161.427 (2)S9—C9A1.746 (2)
N1—C9A1.311 (3)C10—C111.398 (3)
N1—C21.401 (2)C10—C151.404 (3)
C2—C31.377 (3)C11—C121.384 (3)
C2—C101.465 (3)C11—H110.9500
C3—N41.390 (2)C12—C131.394 (3)
N4—C9A1.370 (3)C12—H120.9500
N4—C4A1.408 (3)C13—C141.388 (3)
C4A—C51.385 (3)C13—H130.9500
C4A—C8A1.407 (3)C14—C151.392 (3)
C5—C61.397 (3)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.403 (3)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.399 (3)C16—H16C0.9800
C8—C8A1.383 (3)
C7—O1—C16117.30 (16)C9A—S9—C8A89.72 (10)
C9A—N1—C2104.00 (17)N1—C9A—N4114.52 (17)
C3—C2—N1109.89 (17)N1—C9A—S9133.52 (16)
C3—C2—C10129.46 (18)N4—C9A—S9111.95 (15)
N1—C2—C10120.63 (18)C11—C10—C15118.53 (19)
C2—C3—N4106.81 (17)C11—C10—C2120.19 (18)
C2—C3—Br1131.09 (16)C15—C10—C2121.25 (19)
N4—C3—Br1121.94 (15)C12—C11—C10120.8 (2)
C9A—N4—C3104.77 (17)C12—C11—H11119.6
C9A—N4—C4A115.35 (16)C10—C11—H11119.6
C3—N4—C4A139.80 (17)C11—C12—C13120.3 (2)
C5—C4A—N4130.27 (17)C11—C12—H12119.9
C5—C4A—C8A120.03 (18)C13—C12—H12119.9
N4—C4A—C8A109.70 (17)C14—C13—C12119.7 (2)
C4A—C5—C6119.16 (18)C14—C13—H13120.2
C4A—C5—H5120.4C12—C13—H13120.2
C6—C5—H5120.4C13—C14—C15120.2 (2)
C5—C6—C7120.13 (19)C13—C14—H14119.9
C5—C6—H6119.9C15—C14—H14119.9
C7—C6—H6119.9C14—C15—C10120.5 (2)
O1—C7—C8114.26 (17)C14—C15—H15119.8
O1—C7—C6124.62 (18)C10—C15—H15119.8
C8—C7—C6121.12 (18)O1—C16—H16A109.5
C8A—C8—C7117.81 (18)O1—C16—H16B109.5
C8A—C8—H8121.1H16A—C16—H16B109.5
C7—C8—H8121.1O1—C16—H16C109.5
C8—C8A—C4A121.72 (18)H16A—C16—H16C109.5
C8—C8A—S9125.00 (16)H16B—C16—H16C109.5
C4A—C8A—S9113.27 (15)
C9A—N1—C2—C30.9 (2)N4—C4A—C8A—C8178.98 (18)
C9A—N1—C2—C10177.60 (18)C5—C4A—C8A—S9179.60 (15)
N1—C2—C3—N40.5 (2)N4—C4A—C8A—S90.2 (2)
C10—C2—C3—N4177.8 (2)C8—C8A—S9—C9A178.51 (19)
N1—C2—C3—Br1174.83 (15)C4A—C8A—S9—C9A0.68 (16)
C10—C2—C3—Br16.9 (4)C2—N1—C9A—N40.9 (2)
C2—C3—N4—C9A0.0 (2)C2—N1—C9A—S9177.88 (18)
Br1—C3—N4—C9A175.90 (14)C3—N4—C9A—N10.6 (2)
C2—C3—N4—C4A176.4 (2)C4A—N4—C9A—N1178.04 (18)
Br1—C3—N4—C4A7.7 (3)C3—N4—C9A—S9178.45 (14)
C9A—N4—C4A—C5179.7 (2)C4A—N4—C9A—S91.0 (2)
C3—N4—C4A—C53.5 (4)C8A—S9—C9A—N1177.9 (2)
C9A—N4—C4A—C8A0.5 (2)C8A—S9—C9A—N40.95 (15)
C3—N4—C4A—C8A176.6 (2)C3—C2—C10—C11146.1 (2)
N4—C4A—C5—C6179.2 (2)N1—C2—C10—C1135.7 (3)
C8A—C4A—C5—C61.0 (3)C3—C2—C10—C1535.6 (3)
C4A—C5—C6—C70.2 (3)N1—C2—C10—C15142.5 (2)
C16—O1—C7—C8178.10 (18)C15—C10—C11—C120.6 (3)
C16—O1—C7—C61.8 (3)C2—C10—C11—C12178.9 (2)
C5—C6—C7—O1178.68 (19)C10—C11—C12—C130.6 (3)
C5—C6—C7—C81.2 (3)C11—C12—C13—C140.3 (3)
O1—C7—C8—C8A178.87 (18)C12—C13—C14—C150.1 (3)
C6—C7—C8—C8A1.1 (3)C13—C14—C15—C100.2 (3)
C7—C8—C8A—C4A0.1 (3)C11—C10—C15—C140.4 (3)
C7—C8—C8A—S9179.27 (15)C2—C10—C15—C14178.7 (2)
C5—C4A—C8A—C81.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.563.465 (3)158
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H11BrN2OS
Mr359.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)3.8346 (4), 9.4848 (11), 37.236 (4)
β (°) 91.810 (2)
V3)1353.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.402, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
17224, 3924, 3578
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.070, 1.00
No. of reflections3924
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.95

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.563.465 (3)158
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168.2011).

References

First citationAdib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941–2944.  Web of Science CSD CrossRef
First citationAger, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098–1115.  CrossRef CAS PubMed Web of Science
First citationBarchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409–6422.  Web of Science PubMed
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203–208.  Web of Science CrossRef CAS PubMed
First citationFun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.  Web of Science CSD CrossRef IUCr Journals
First citationFun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265–o3266.  Web of Science CSD CrossRef CAS IUCr Journals
First citationKumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258–4266.  Web of Science CrossRef CAS PubMed
First citationLandreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741–745.  Web of Science CSD CrossRef
First citationMase, T., Arima, H., Tomioka, K., Yamada, T. & Murase, K. (1988). Eur. J. Med. Chem. 23, 335–339.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationYousefi, B. H., Drzezga, F., Reutern, B., Manook, A., Schwaiger, H. M., Wester, H. J. & Henriksen, G. (2011). ACS Med. Chem. Lett. 2, 673–677.  Web of Science CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds