supplementary materials


is5255 scheme

Acta Cryst. (2013). E69, o550    [ doi:10.1107/S1600536813006880 ]

4-(6-Benzyl-7-oxo-1,2,3,4,5,5a,5a1,6,7,7a,8,12b-dodecahydrobenzo[f]cycloocta[cd]isoindol-8-yl)benzonitrile

Y.-L. Zhang and Y.-M. Hu

Abstract top

In the title compound, C31H30N2O, the cis-fused cyclohexene and cyclooctane rings adopt boat and boat-chair conformations, respectively. The essentially planar five-membered N-heterocyclic ring [r.m.s. deviation = 0.017 (1) Å] is cis- and trans-fused, respectively, with the cyclohexene and cyclooctane rings. In the crystal, molecules are linked into inversion dimers through pairs of weak C-H...O interactions.

Comment top

Domino reaction as an efficient protocol to construct structurally complicate molecule due to high atom economy and environmental benefits (Zhao et al., 2012). Palladium-catalyzed domino reactions have become an important tool of modern organic synthesis chemistry (Hu et al., 2009, 2010). Condensed heterocyclic compounds are playing increasingly important roles as synthetic building blocks, pharmacophores, and electroluminescence materials (Rixson et al., 2012). We have reported some novel intermolecular and intramolecular reactions of aryl halides with the olefins (Yu et al., 2012; Wang et al., 2011). The reaction of 4-bromobenzonitrile with N-benzyl-N-(cyclooct-2-en-1-yl) cinnamamide, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 423 K for 18 h, gave the unexpected title product.

The title compound, C31H30N2O, contains three phenyl ring, one five-numbered N-heterocyclic ring, one six-membered carbon ring with a boat conformation, and one eight-memmbered carbon ring with a boat-chair conformation. All the rings are not coplanar (Fig. 1). In the molecule there are five chiral carbon atoms, C8, C14, C15, C16 and C18, but the crystal is a racemic system due to lacking of the chiral separation. In the crystal packing, there are weak intermolecular C—H···O interactions, C29—H29···O1i (i: -x, 1 - y, 1 - z), through which dimers were formed between paired enantiomers (Fig. 2).

Related literature top

For the atom economy and environmental benefits of using a domino reaction to construct astructurally complicated molecule, see: Zhao et al. (2012). For palladium-catalysed coupling reactions, see: Hu et al. (2009, 2010). For the use of condensed heterocyclic compounds as synthetic building blocks, pharmacophores and electroluminescent materials, see: Rixson et al. (2012). For reactions of aryl halides with olefins, see: Yu & Hu (2012); Wang & Hu (2011).

Experimental top

An oven-dried Schlenk flask was evacuated, filled with nitrogen, and then charged with N-benzyl-N-(cyclooct-2-en-1-yl)cinnamamide (3.45 g, 10 mmol), ethyl 4-bromobenzonitrile (2.01 g, 11 mmol), tributylamine (3 ml), PPh3 (52.5 mg, 0.2 mmol), Pd(OAc)2 (24 mg, 0.1 mol), and DMF (10 ml) to give a yellow solution. The reaction mixture was heated at 423 K with stirring. The reaction mixture was cooled to room temperature after 18 h and the resultant yellow-orange mixture was diluted with Et2O (10 ml). The mixture was washed with H2O (15 ml) and the aqueous layer was extracted with Et2O (20 ml). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel (petroleum ester:EtOAc, 8:1) and recrystallized from EtOAc, yield 3.48 g (78%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from a solution of the title compound from ethyl acetate over a period of one week.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A view of a pair of racemic molecules linked by C—H···O hydrogen bonds shown as dashed lines [symmetry code (i): -x, 1 - y,1 - z].
[Figure 3] Fig. 3. A view of the cell packing down the a axis.
4-[3-Benzyl-2-oxo-3-azatetracyclo[8.7.1.04,18.011,16]octadeca-11 (16),12,14-trien-17-yl]benzonitrile top
Crystal data top
C31H30N2OF(000) = 952
Mr = 446.57Dx = 1.261 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0270 (11) ÅCell parameters from 3715 reflections
b = 11.2196 (13) Åθ = 2.1–23.7°
c = 21.445 (2) ŵ = 0.08 mm1
β = 102.912 (1)°T = 291 K
V = 2351.5 (5) Å3Block, colourless
Z = 40.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5413 independent reflections
Radiation source: sealed tube4118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1311
Tmin = 0.981, Tmax = 0.985k = 1414
19941 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.5346P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5413 reflectionsΔρmax = 0.23 e Å3
308 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (9)
Crystal data top
C31H30N2OV = 2351.5 (5) Å3
Mr = 446.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0270 (11) ŵ = 0.08 mm1
b = 11.2196 (13) ÅT = 291 K
c = 21.445 (2) Å0.26 × 0.22 × 0.20 mm
β = 102.912 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5413 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4118 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.024
19941 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.23 e Å3
S = 1.04Δρmin = 0.18 e Å3
5413 reflectionsAbsolute structure: ?
308 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31111 (17)0.90193 (14)0.37306 (8)0.0602 (4)
H10.26670.82930.37380.072*
C20.24286 (19)0.99559 (15)0.33757 (9)0.0678 (5)
H20.15370.98530.31400.081*
C30.3070 (2)1.10362 (15)0.33714 (8)0.0669 (5)
H30.26111.16680.31360.080*
C40.4377 (2)1.11816 (15)0.37124 (8)0.0663 (5)
H40.48071.19160.37110.080*
C50.50674 (18)1.02485 (14)0.40593 (7)0.0571 (4)
H50.59641.03570.42860.069*
C60.44428 (15)0.91508 (12)0.40739 (7)0.0471 (3)
C70.52446 (15)0.81721 (13)0.44731 (7)0.0516 (4)
H7A0.61660.81700.44020.062*
H7B0.53100.83550.49210.062*
C80.47447 (14)0.63044 (12)0.37700 (6)0.0419 (3)
H80.43090.67640.33910.050*
C90.62199 (15)0.60282 (15)0.37396 (7)0.0547 (4)
H9A0.66120.55070.40940.066*
H9B0.67380.67660.37990.066*
C100.64000 (18)0.54450 (16)0.31205 (8)0.0635 (4)
H10A0.73670.54470.31210.076*
H10B0.59410.59370.27650.076*
C110.5869 (2)0.41688 (16)0.29973 (9)0.0690 (5)
H11A0.65090.37300.28060.083*
H11B0.58750.38010.34070.083*
C120.4439 (2)0.40138 (15)0.25704 (8)0.0683 (5)
H12A0.45400.39740.21310.082*
H12B0.40970.32450.26700.082*
C130.33303 (18)0.49374 (14)0.25950 (7)0.0580 (4)
H13A0.25740.47980.22320.070*
H13B0.36990.57190.25380.070*
C140.27571 (15)0.49744 (12)0.31984 (6)0.0460 (3)
H140.23530.41910.32390.055*
C150.38769 (13)0.51737 (11)0.38128 (6)0.0391 (3)
H150.44890.44820.38720.047*
C160.33156 (13)0.53197 (12)0.44200 (6)0.0406 (3)
H160.36890.46810.47200.049*
C170.38781 (13)0.65000 (13)0.47065 (6)0.0450 (3)
C180.17476 (13)0.53146 (13)0.43172 (7)0.0453 (3)
H180.15290.57250.46850.054*
C190.11444 (14)0.60591 (13)0.37323 (8)0.0507 (4)
C200.16338 (15)0.58891 (13)0.31758 (7)0.0507 (4)
C210.10974 (18)0.65907 (16)0.26432 (9)0.0703 (5)
H210.14080.64880.22690.084*
C220.0109 (2)0.74376 (19)0.26639 (13)0.0890 (7)
H220.02410.78980.23040.107*
C230.03587 (19)0.76050 (17)0.32073 (14)0.0881 (7)
H230.10270.81760.32160.106*
C240.01611 (16)0.69246 (15)0.37492 (10)0.0688 (5)
H240.01480.70480.41220.083*
C250.11027 (13)0.40779 (13)0.42908 (6)0.0441 (3)
C260.18459 (16)0.30341 (14)0.43995 (9)0.0601 (4)
H260.27950.30700.44740.072*
C270.12197 (17)0.19377 (15)0.44006 (9)0.0638 (4)
H270.17460.12490.44800.077*
C280.01900 (16)0.18671 (15)0.42841 (7)0.0542 (4)
C290.09470 (17)0.28951 (17)0.41747 (10)0.0696 (5)
H290.18960.28570.40970.083*
C300.03091 (16)0.39835 (16)0.41795 (9)0.0640 (4)
H300.08380.46720.41060.077*
C310.08463 (18)0.07266 (18)0.42638 (9)0.0673 (5)
N10.46710 (11)0.69837 (10)0.43443 (5)0.0433 (3)
N20.13830 (19)0.01797 (17)0.42320 (10)0.0922 (6)
O10.36647 (12)0.69285 (11)0.52002 (5)0.0644 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0559 (9)0.0417 (8)0.0776 (11)0.0027 (7)0.0031 (8)0.0007 (7)
C20.0631 (10)0.0535 (10)0.0794 (12)0.0063 (8)0.0001 (9)0.0033 (8)
C30.0878 (13)0.0482 (9)0.0634 (10)0.0093 (9)0.0141 (9)0.0054 (7)
C40.0908 (13)0.0451 (9)0.0639 (10)0.0122 (9)0.0191 (9)0.0016 (7)
C50.0640 (10)0.0516 (9)0.0544 (8)0.0130 (7)0.0106 (7)0.0045 (7)
C60.0526 (8)0.0411 (7)0.0471 (7)0.0036 (6)0.0102 (6)0.0070 (6)
C70.0495 (8)0.0442 (8)0.0555 (8)0.0061 (6)0.0004 (6)0.0057 (6)
C80.0455 (7)0.0393 (7)0.0382 (6)0.0019 (5)0.0038 (5)0.0030 (5)
C90.0480 (8)0.0619 (10)0.0555 (8)0.0054 (7)0.0146 (7)0.0011 (7)
C100.0635 (10)0.0703 (11)0.0631 (10)0.0019 (8)0.0278 (8)0.0019 (8)
C110.0844 (13)0.0600 (10)0.0724 (11)0.0088 (9)0.0387 (10)0.0005 (8)
C120.1055 (15)0.0502 (9)0.0566 (9)0.0090 (9)0.0340 (10)0.0083 (7)
C130.0795 (11)0.0511 (9)0.0393 (7)0.0151 (8)0.0047 (7)0.0010 (6)
C140.0545 (8)0.0376 (7)0.0409 (7)0.0072 (6)0.0003 (6)0.0021 (5)
C150.0404 (7)0.0355 (6)0.0392 (6)0.0019 (5)0.0043 (5)0.0033 (5)
C160.0365 (6)0.0431 (7)0.0394 (6)0.0023 (5)0.0027 (5)0.0048 (5)
C170.0376 (7)0.0508 (8)0.0425 (7)0.0027 (6)0.0004 (5)0.0019 (6)
C180.0375 (7)0.0472 (8)0.0497 (7)0.0024 (6)0.0069 (6)0.0027 (6)
C190.0364 (7)0.0407 (7)0.0673 (9)0.0001 (6)0.0047 (6)0.0016 (6)
C200.0464 (8)0.0426 (8)0.0527 (8)0.0058 (6)0.0113 (6)0.0043 (6)
C210.0655 (10)0.0621 (10)0.0660 (10)0.0076 (8)0.0222 (8)0.0158 (8)
C220.0660 (12)0.0685 (13)0.1081 (17)0.0023 (10)0.0324 (12)0.0303 (12)
C230.0484 (10)0.0549 (11)0.143 (2)0.0107 (8)0.0176 (12)0.0156 (12)
C240.0421 (8)0.0520 (9)0.1047 (14)0.0058 (7)0.0003 (8)0.0016 (9)
C250.0382 (7)0.0522 (8)0.0423 (7)0.0001 (6)0.0096 (5)0.0011 (6)
C260.0398 (8)0.0537 (9)0.0840 (11)0.0010 (7)0.0076 (7)0.0076 (8)
C270.0518 (9)0.0540 (10)0.0843 (12)0.0005 (7)0.0126 (8)0.0082 (8)
C280.0518 (9)0.0606 (10)0.0515 (8)0.0116 (7)0.0146 (7)0.0023 (7)
C290.0383 (8)0.0788 (12)0.0914 (13)0.0076 (8)0.0141 (8)0.0062 (10)
C300.0410 (8)0.0610 (10)0.0895 (12)0.0039 (7)0.0136 (8)0.0065 (9)
C310.0589 (10)0.0736 (12)0.0691 (11)0.0160 (9)0.0136 (8)0.0043 (9)
N10.0432 (6)0.0403 (6)0.0433 (6)0.0021 (5)0.0033 (5)0.0012 (5)
N20.0827 (12)0.0817 (12)0.1097 (14)0.0295 (10)0.0162 (10)0.0052 (10)
O10.0637 (7)0.0772 (8)0.0538 (6)0.0109 (6)0.0160 (5)0.0209 (6)
Geometric parameters (Å, º) top
C1—C61.381 (2)C14—C151.5445 (18)
C1—C21.385 (2)C14—H140.9800
C1—H10.9300C15—C161.5384 (18)
C2—C31.373 (2)C15—H150.9800
C2—H20.9300C16—C171.5147 (19)
C3—C41.360 (3)C16—C181.5380 (18)
C3—H30.9300C16—H160.9800
C4—C51.378 (2)C17—O11.2243 (17)
C4—H40.9300C17—N11.3438 (18)
C5—C61.385 (2)C18—C191.516 (2)
C5—H50.9300C18—C251.527 (2)
C6—C71.509 (2)C18—H180.9800
C7—N11.4539 (17)C19—C241.390 (2)
C7—H7A0.9700C19—C201.401 (2)
C7—H7B0.9700C20—C211.392 (2)
C8—N11.4642 (17)C21—C221.381 (3)
C8—C91.527 (2)C21—H210.9300
C8—C151.5526 (18)C22—C231.363 (3)
C8—H80.9800C22—H220.9300
C9—C101.526 (2)C23—C241.391 (3)
C9—H9A0.9700C23—H230.9300
C9—H9B0.9700C24—H240.9300
C10—C111.530 (2)C25—C261.380 (2)
C10—H10A0.9700C25—C301.386 (2)
C10—H10B0.9700C26—C271.381 (2)
C11—C121.528 (3)C26—H260.9300
C11—H11A0.9700C27—C281.382 (2)
C11—H11B0.9700C27—H270.9300
C12—C131.530 (2)C28—C291.372 (2)
C12—H12A0.9700C28—C311.435 (2)
C12—H12B0.9700C29—C301.378 (2)
C13—C141.529 (2)C29—H290.9300
C13—H13A0.9700C30—H300.9300
C13—H13B0.9700C31—N21.145 (2)
C14—C201.517 (2)
C6—C1—C2120.80 (15)C13—C14—H14106.9
C6—C1—H1119.6C15—C14—H14106.9
C2—C1—H1119.6C16—C15—C14113.81 (11)
C3—C2—C1119.92 (17)C16—C15—C8106.19 (10)
C3—C2—H2120.0C14—C15—C8112.22 (10)
C1—C2—H2120.0C16—C15—H15108.1
C4—C3—C2119.90 (16)C14—C15—H15108.1
C4—C3—H3120.1C8—C15—H15108.1
C2—C3—H3120.1C17—C16—C18109.72 (11)
C3—C4—C5120.45 (16)C17—C16—C15105.24 (11)
C3—C4—H4119.8C18—C16—C15115.71 (11)
C5—C4—H4119.8C17—C16—H16108.6
C4—C5—C6120.82 (16)C18—C16—H16108.6
C4—C5—H5119.6C15—C16—H16108.6
C6—C5—H5119.6O1—C17—N1125.56 (14)
C1—C6—C5118.10 (14)O1—C17—C16124.95 (13)
C1—C6—C7123.63 (13)N1—C17—C16109.47 (12)
C5—C6—C7118.26 (13)C19—C18—C25112.51 (11)
N1—C7—C6114.93 (11)C19—C18—C16108.83 (11)
N1—C7—H7A108.5C25—C18—C16114.81 (11)
C6—C7—H7A108.5C19—C18—H18106.7
N1—C7—H7B108.5C25—C18—H18106.7
C6—C7—H7B108.5C16—C18—H18106.7
H7A—C7—H7B107.5C24—C19—C20120.18 (15)
N1—C8—C9111.91 (11)C24—C19—C18121.17 (16)
N1—C8—C15103.97 (10)C20—C19—C18118.61 (12)
C9—C8—C15113.44 (12)C21—C20—C19118.50 (16)
N1—C8—H8109.1C21—C20—C14123.84 (16)
C9—C8—H8109.1C19—C20—C14117.64 (12)
C15—C8—H8109.1C22—C21—C20120.7 (2)
C8—C9—C10115.35 (13)C22—C21—H21119.6
C8—C9—H9A108.4C20—C21—H21119.6
C10—C9—H9A108.4C23—C22—C21120.58 (18)
C8—C9—H9B108.4C23—C22—H22119.7
C10—C9—H9B108.4C21—C22—H22119.7
H9A—C9—H9B107.5C22—C23—C24120.17 (19)
C9—C10—C11116.56 (14)C22—C23—H23119.9
C9—C10—H10A108.2C24—C23—H23119.9
C11—C10—H10A108.2C23—C24—C19119.8 (2)
C9—C10—H10B108.2C23—C24—H24120.1
C11—C10—H10B108.2C19—C24—H24120.1
H10A—C10—H10B107.3C26—C25—C30117.17 (14)
C12—C11—C10116.98 (15)C26—C25—C18123.84 (12)
C12—C11—H11A108.1C30—C25—C18118.93 (13)
C10—C11—H11A108.1C25—C26—C27121.84 (14)
C12—C11—H11B108.1C25—C26—H26119.1
C10—C11—H11B108.1C27—C26—H26119.1
H11A—C11—H11B107.3C28—C27—C26119.86 (16)
C13—C12—C11119.60 (14)C28—C27—H27120.1
C13—C12—H12A107.4C26—C27—H27120.1
C11—C12—H12A107.4C29—C28—C27119.17 (15)
C13—C12—H12B107.4C29—C28—C31120.80 (15)
C11—C12—H12B107.4C27—C28—C31120.02 (16)
H12A—C12—H12B107.0C28—C29—C30120.38 (15)
C12—C13—C14117.47 (13)C28—C29—H29119.8
C12—C13—H13A107.9C30—C29—H29119.8
C14—C13—H13A107.9C29—C30—C25121.58 (16)
C12—C13—H13B107.9C29—C30—H30119.2
C14—C13—H13B107.9C25—C30—H30119.2
H13A—C13—H13B107.2N2—C31—C28178.3 (2)
C20—C14—C13114.09 (12)C17—N1—C7121.37 (12)
C20—C14—C15108.81 (11)C17—N1—C8115.06 (11)
C13—C14—C15112.75 (12)C7—N1—C8123.02 (11)
C20—C14—H14106.9
C6—C1—C2—C31.1 (3)C16—C18—C19—C2046.38 (17)
C1—C2—C3—C40.4 (3)C24—C19—C20—C211.0 (2)
C2—C3—C4—C50.5 (3)C18—C19—C20—C21178.74 (13)
C3—C4—C5—C60.7 (3)C24—C19—C20—C14176.99 (13)
C2—C1—C6—C50.8 (2)C18—C19—C20—C140.76 (19)
C2—C1—C6—C7179.66 (16)C13—C14—C20—C213.8 (2)
C4—C5—C6—C10.1 (2)C15—C14—C20—C21130.65 (14)
C4—C5—C6—C7178.82 (15)C13—C14—C20—C19174.06 (12)
C1—C6—C7—N115.7 (2)C15—C14—C20—C1947.21 (16)
C5—C6—C7—N1165.47 (13)C19—C20—C21—C220.2 (2)
N1—C8—C9—C10173.41 (12)C14—C20—C21—C22177.63 (15)
C15—C8—C9—C1069.34 (16)C20—C21—C22—C230.2 (3)
C8—C9—C10—C1168.4 (2)C21—C22—C23—C240.2 (3)
C9—C10—C11—C1296.45 (19)C22—C23—C24—C191.0 (3)
C10—C11—C12—C1334.8 (2)C20—C19—C24—C231.4 (2)
C11—C12—C13—C1470.43 (19)C18—C19—C24—C23179.09 (15)
C12—C13—C14—C20178.28 (13)C19—C18—C25—C26130.18 (15)
C12—C13—C14—C1556.94 (17)C16—C18—C25—C265.0 (2)
C20—C14—C15—C1647.53 (15)C19—C18—C25—C3052.81 (18)
C13—C14—C15—C16175.15 (11)C16—C18—C25—C30178.00 (13)
C20—C14—C15—C873.10 (14)C30—C25—C26—C270.2 (2)
C13—C14—C15—C854.52 (15)C18—C25—C26—C27176.86 (15)
N1—C8—C15—C161.84 (12)C25—C26—C27—C280.6 (3)
C9—C8—C15—C16123.64 (12)C26—C27—C28—C290.6 (3)
N1—C8—C15—C14126.78 (11)C26—C27—C28—C31177.93 (16)
C9—C8—C15—C14111.42 (13)C27—C28—C29—C300.1 (3)
C14—C15—C16—C17124.53 (11)C31—C28—C29—C30178.38 (17)
C8—C15—C16—C170.57 (13)C28—C29—C30—C250.3 (3)
C14—C15—C16—C183.23 (16)C26—C25—C30—C290.3 (3)
C8—C15—C16—C18120.72 (12)C18—C25—C30—C29177.49 (16)
C18—C16—C17—O155.37 (17)O1—C17—N1—C77.3 (2)
C15—C16—C17—O1179.50 (13)C16—C17—N1—C7174.23 (11)
C18—C16—C17—N1126.19 (12)O1—C17—N1—C8179.09 (13)
C15—C16—C17—N11.06 (14)C16—C17—N1—C82.48 (15)
C17—C16—C18—C1976.27 (14)C6—C7—N1—C1796.92 (16)
C15—C16—C18—C1942.59 (15)C6—C7—N1—C874.16 (17)
C17—C16—C18—C25156.63 (11)C9—C8—N1—C17125.55 (13)
C15—C16—C18—C2584.51 (14)C15—C8—N1—C172.75 (14)
C25—C18—C19—C24100.26 (16)C9—C8—N1—C762.85 (16)
C16—C18—C19—C24131.34 (14)C15—C8—N1—C7174.34 (11)
C25—C18—C19—C2082.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O1i0.932.583.301 (2)134
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O1i0.932.583.301 (2)134
Symmetry code: (i) x, y+1, z+1.
Acknowledgements top

We thank the National Science Foundation of China (project Nos. 21272005 and 21072003) for financial support of this work.

references
References top

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Hu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467–3473.

Hu, Y.-M., Ouyang, Y., Qu, Y., Hu, Q. & Yao, H. (2009). Chem. Commun. pp. 4575–4577.

Rixson, J.-E., Chaloner, T., Heath, C. H., Tietze, L. F. & Stewart, S. G. (2012). Eur. J. Org. Chem. pp. 544–558.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, H. & Hu, Y. (2011). Acta Cryst. E67, o919.

Yu, T. & Hu, Y. (2012). Acta Cryst. E68, o1184.

Zhao, Q.-S., Hu, Q., Wen, L., Wu, M. & Hu, Y.-M. (2012). Adv. Synth. Catal. 354, 2113–2116.