supplementary materials


lh5592 scheme

Acta Cryst. (2013). E69, m212-m213    [ doi:10.1107/S1600536813006867 ]

Tris(2,2'-bipyridine)copper(II) pentacyanidonitrosoferrate(II) methanol disolvate monohydrate

J. A. Rusanova, O. V. Nesterova, R. I. Zubatyuk and O. V. Kozachuk

Abstract top

The title complex [Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH3OH·H2O, consists of discrete [Cu(bpy)3]2+ cations (bpy is 2,2'-bipyridine), [Fe(CN)5NO]2- anions and solvent molecules of crystallization (two methanol molecules and one water molecules per asymmetric unit). The CuII ion adopts a distorted octahedral environment, coordinated by six N atoms from three bpy ligands. The cation charge is balanced by a nitroprusside counter-anion, which has a slightly distorted octahedral coordination geometry. In the crystal, anions and solvent molecules are involved in O-H...N and O-H...O hydrogen bonds, which form chains along [100]. The cations are located between these chains.

Comment top

This work is a continuation of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Babich et al., 1996; Kovbasyuk et al., 1998; Makhankova et al., 2002; Nesterov et al., 2006; Pryma et al., 2003; Vinogradova et al., 2002). We have shown recently the possibility of using anionic complexes as a source of metalloligands in direct synthesis of heterometallic compounds (Nikitina et al., 2008; Vreshch et al., 2009a,b).

In this paper we present a novel Cu/Fe heterometallic ionic complex [Cu(bpy)3][Fe(CN)5NO].2CH3OH.H2O which consists of discrete [Cu(bpy)3]2+ and [Fe(CN)5NO]2- ions (Fig. 1). The CuII ion adopts a distorted octahedral environment by coordinating with six nitrogen atoms from three bpy ligands. The range of Cu—N bond distances of 1.999 (3) - 2.035 (3)Å is in good agreement with the previously reported values for analagous complexes (Shyu et al., 1999; Wang et al., 2007). The anion geometry is unremarkable and in good agreement with reported values for other nitroprussides (Shyu et al. 1997; 1999; Dong et al. 2003; Zhang et al., 2004). In the crystal, anions are involved in the formation of O—H···O hydrogen bonds with solvent molecules to form one-dimensional chains along [100] (Fig. 2). The complex cations are located between these chains.

Related literature top

For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005); Babich et al. (1996); Kovbasyuk et al. (1998); Makhankova et al. (2002); Nesterov et al. (2006); Pryma et al. (2003); Vinogradova et al. (2002). For the structures of related complexes, see: Nikitina et al. (2008); Vreshch et al., (2009a,b); Shyu et al. (1997); Shyu & Wei (1999); Dong et al. (2003); Wang et al. (2007); Zhang et al. (2004).

Experimental top

Copper powder (0.04 g, 0.63 mmol), NH4HSO4 (0.145 g, 1.26 mmol), Na2[Fe(CN)5(NO)].2H2O (0.188 g, 0.63 mmol) and bpy (0.296 g, 1.89 mmol) in methanol (30 ml) were heated to 323-333K and stirred magnetically until total dissolution of copper was observed (30 min). Dark-red crystals suitable for X-ray crystallography was isolated from the resulting dark-red solution with addition of 2-propanol in six days. The crystals (0.1 g, yield 30%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.

Refinement top

H atoms were included in calculated positions with C—H = 0.93 - 0.96Å and O—H = 0.82 - 0.85Å. They were included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O,Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with cations omitted for clarity to show the one-dimensional hydrogen-bonded (dashed lines) chains formed by the anions and solvent molecules.
Tris(2,2'-bipyridine)copper(II) pentacyanidonitrosoferrate(II) methanol disolvate monohydrate top
Crystal data top
[Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2OF(000) = 1708
Mr = 830.15Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5205 reflections
a = 11.1308 (8) Åθ = 2.6–32.2°
b = 14.7928 (9) ŵ = 1.00 mm1
c = 23.1448 (17) ÅT = 293 K
β = 90.916 (8)°Block, dark red
V = 3810.4 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
7368 independent reflections
Radiation source: fine-focus sealed tube3799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1311
Tmin = 0.74, Tmax = 0.91k = 1818
22593 measured reflectionsl = 2824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
7368 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2OV = 3810.4 (5) Å3
Mr = 830.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1308 (8) ŵ = 1.00 mm1
b = 14.7928 (9) ÅT = 293 K
c = 23.1448 (17) Å0.30 × 0.20 × 0.10 mm
β = 90.916 (8)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3799 reflections with I > 2σ(I)
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
Rint = 0.053
Tmin = 0.74, Tmax = 0.91θmax = 26.4°
22593 measured reflectionsStandard reflections: 0
7368 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.59 e Å3
S = 1.01Δρmin = 0.63 e Å3
7368 reflectionsAbsolute structure: ?
496 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.54777 (5)0.85655 (4)0.08468 (3)0.03893 (16)
Cu10.91414 (4)0.80913 (3)0.32784 (2)0.04640 (16)
N11.0220 (3)0.7802 (2)0.26108 (16)0.0497 (9)
N21.0506 (3)0.8936 (2)0.34517 (16)0.0495 (9)
N30.7880 (3)0.7182 (2)0.30682 (14)0.0382 (8)
N40.9782 (3)0.7012 (2)0.37086 (13)0.0378 (8)
N50.8102 (3)0.8510 (2)0.39425 (14)0.0416 (8)
N60.8275 (3)0.9133 (2)0.29055 (14)0.0372 (8)
N70.2746 (3)0.8839 (2)0.06854 (17)0.0620 (11)
N80.5926 (3)1.0615 (2)0.09581 (18)0.0622 (11)
N90.8113 (4)0.8198 (3)0.11772 (19)0.0731 (12)
N100.5011 (3)0.6536 (3)0.10134 (18)0.0637 (11)
N110.4997 (3)0.8746 (2)0.21488 (17)0.0534 (10)
N120.5814 (3)0.8554 (2)0.01612 (17)0.0492 (9)
C11.0021 (4)0.7186 (3)0.2195 (2)0.0605 (12)
H1A0.92920.68790.21920.073*
C21.0812 (5)0.6988 (3)0.1786 (2)0.0694 (14)
H2A1.06340.65540.15070.083*
C31.1885 (5)0.7432 (4)0.1783 (2)0.0765 (16)
H3A1.24490.73090.15010.092*
C41.2113 (4)0.8055 (4)0.2197 (2)0.0739 (15)
H4A1.28430.83610.22030.089*
C51.1273 (4)0.8241 (3)0.2611 (2)0.0502 (11)
C61.1399 (4)0.8914 (3)0.3066 (2)0.0551 (12)
C7A0.3757 (4)0.8748 (3)0.07377 (18)0.0445 (10)
C71.2363 (5)0.9509 (4)0.3111 (3)0.0795 (16)
H7A1.30020.94700.28580.095*
C8A0.5745 (3)0.9855 (3)0.09130 (19)0.0474 (11)
C81.2348 (5)1.0162 (4)0.3542 (3)0.0928 (19)
H8A1.29701.05800.35720.111*
C9A0.7126 (4)0.8341 (3)0.10677 (19)0.0474 (11)
C91.1436 (5)1.0192 (4)0.3915 (3)0.0841 (17)
H9A1.14161.06310.42030.101*
C10A0.5162 (3)0.7285 (3)0.09489 (19)0.0456 (11)
C101.0541 (4)0.9564 (3)0.3865 (2)0.0634 (13)
H10A0.99250.95760.41310.076*
C11A0.5175 (3)0.8666 (3)0.1664 (2)0.0415 (10)
C110.6953 (4)0.7304 (3)0.2706 (2)0.0497 (11)
H11A0.69080.78420.24990.060*
C120.6073 (4)0.6684 (3)0.2625 (2)0.0546 (12)
H12A0.54420.67940.23670.066*
C130.6126 (4)0.5887 (3)0.2931 (2)0.0586 (13)
H13A0.55210.54570.28910.070*
C140.7075 (4)0.5742 (3)0.32919 (19)0.0499 (11)
H14A0.71300.52070.35010.060*
C150.7955 (3)0.6383 (3)0.33483 (17)0.0409 (10)
C160.9060 (4)0.6278 (3)0.37029 (17)0.0413 (10)
C170.9377 (4)0.5503 (3)0.39901 (19)0.0548 (12)
H17A0.88660.50050.39850.066*
C181.0445 (4)0.5465 (3)0.4283 (2)0.0587 (13)
H18A1.06730.49400.44770.070*
C191.1185 (4)0.6208 (3)0.42895 (19)0.0575 (12)
H19A1.19180.61970.44870.069*
C201.0814 (4)0.6969 (3)0.39965 (18)0.0476 (11)
H20A1.13110.74750.40010.057*
C210.8078 (4)0.8163 (3)0.44769 (18)0.0479 (11)
H21A0.86310.77160.45770.058*
C220.7276 (4)0.8438 (3)0.48790 (19)0.0544 (12)
H22A0.72770.81760.52440.065*
C230.6471 (4)0.9102 (3)0.4740 (2)0.0600 (12)
H23A0.59120.92940.50080.072*
C240.6497 (4)0.9482 (3)0.41990 (19)0.0535 (12)
H24A0.59570.99370.40970.064*
C250.7321 (3)0.9188 (2)0.38118 (18)0.0399 (10)
C260.7462 (3)0.9554 (2)0.32274 (18)0.0383 (9)
C270.6835 (3)1.0305 (3)0.30261 (19)0.0479 (11)
H27A0.62811.05950.32590.058*
C280.7047 (4)1.0611 (3)0.2478 (2)0.0556 (12)
H28A0.66301.11080.23330.067*
C290.7865 (4)1.0186 (3)0.21512 (19)0.0535 (11)
H29A0.80241.03940.17810.064*
C300.8463 (4)0.9441 (3)0.23692 (18)0.0472 (11)
H30A0.90120.91430.21380.057*
O10.6132 (3)0.8586 (3)0.03055 (15)0.0856 (11)
O1S0.3532 (3)0.7337 (3)0.3573 (2)0.1165 (16)
H1S0.35160.69040.37940.175*
C1S0.4416 (5)0.7904 (4)0.3736 (3)0.105 (2)
H1SA0.44240.84160.34820.158*
H1SB0.51730.75950.37200.158*
H1SC0.42820.81040.41250.158*
O2S0.0815 (7)0.8683 (4)0.5202 (3)0.178 (2)
H2S0.05610.82200.53530.267*
C2S0.2053 (8)0.8635 (5)0.5160 (4)0.156 (4)
H2SA0.23490.91750.49820.234*
H2SB0.22620.81210.49300.234*
H2SC0.24050.85730.55400.234*
O3S1.0227 (3)0.8062 (2)0.04880 (15)0.0899 (11)
H3SA1.08270.83650.06130.135*
H3SB0.96900.81290.07420.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0380 (3)0.0344 (3)0.0444 (3)0.0019 (3)0.0002 (3)0.0001 (3)
Cu10.0481 (3)0.0407 (3)0.0504 (3)0.0027 (2)0.0019 (3)0.0039 (3)
N10.045 (2)0.045 (2)0.059 (2)0.0040 (17)0.006 (2)0.008 (2)
N20.049 (2)0.046 (2)0.054 (2)0.0050 (18)0.011 (2)0.014 (2)
N30.0303 (18)0.0397 (18)0.045 (2)0.0001 (15)0.0026 (17)0.0103 (17)
N40.0359 (19)0.0405 (18)0.0371 (18)0.0027 (15)0.0009 (17)0.0014 (17)
N50.044 (2)0.0390 (18)0.041 (2)0.0027 (16)0.0012 (17)0.0017 (18)
N60.0386 (19)0.0361 (17)0.0368 (19)0.0056 (15)0.0055 (17)0.0013 (17)
N70.047 (2)0.065 (2)0.073 (3)0.006 (2)0.008 (2)0.007 (2)
N80.064 (2)0.041 (2)0.081 (3)0.0053 (19)0.002 (2)0.005 (2)
N90.048 (2)0.091 (3)0.081 (3)0.015 (2)0.003 (2)0.016 (3)
N100.070 (3)0.041 (2)0.080 (3)0.004 (2)0.009 (2)0.004 (2)
N110.061 (2)0.051 (2)0.049 (2)0.0053 (18)0.004 (2)0.005 (2)
N120.055 (2)0.0411 (19)0.051 (2)0.0139 (18)0.0027 (19)0.004 (2)
C10.062 (3)0.060 (3)0.060 (3)0.009 (3)0.000 (3)0.002 (3)
C20.086 (4)0.063 (3)0.060 (3)0.010 (3)0.002 (3)0.000 (3)
C30.089 (4)0.077 (4)0.065 (4)0.017 (3)0.023 (3)0.013 (3)
C40.053 (3)0.084 (4)0.085 (4)0.006 (3)0.009 (3)0.028 (4)
C50.035 (2)0.059 (3)0.057 (3)0.001 (2)0.001 (2)0.021 (3)
C60.044 (3)0.052 (3)0.069 (3)0.011 (2)0.010 (3)0.019 (3)
C7A0.051 (3)0.040 (2)0.042 (2)0.000 (2)0.000 (2)0.003 (2)
C70.062 (3)0.087 (4)0.089 (4)0.029 (3)0.011 (3)0.020 (4)
C8A0.042 (2)0.046 (3)0.054 (3)0.000 (2)0.001 (2)0.009 (2)
C80.084 (4)0.078 (4)0.116 (5)0.043 (4)0.024 (4)0.016 (4)
C9A0.051 (3)0.042 (2)0.049 (3)0.000 (2)0.009 (2)0.006 (2)
C90.092 (4)0.068 (3)0.092 (4)0.022 (3)0.020 (4)0.003 (3)
C10A0.039 (2)0.045 (2)0.053 (3)0.006 (2)0.001 (2)0.007 (2)
C100.065 (3)0.054 (3)0.071 (3)0.014 (3)0.009 (3)0.001 (3)
C11A0.031 (2)0.030 (2)0.063 (3)0.0012 (17)0.001 (2)0.004 (2)
C110.043 (3)0.041 (2)0.065 (3)0.004 (2)0.002 (3)0.009 (2)
C120.039 (2)0.054 (3)0.070 (3)0.006 (2)0.012 (2)0.005 (3)
C130.051 (3)0.044 (3)0.080 (4)0.014 (2)0.006 (3)0.005 (3)
C140.051 (3)0.038 (2)0.060 (3)0.004 (2)0.001 (3)0.008 (2)
C150.041 (2)0.037 (2)0.046 (2)0.002 (2)0.008 (2)0.002 (2)
C160.043 (2)0.040 (2)0.041 (2)0.0016 (19)0.006 (2)0.005 (2)
C170.058 (3)0.041 (2)0.065 (3)0.002 (2)0.001 (3)0.012 (2)
C180.066 (3)0.054 (3)0.057 (3)0.019 (3)0.001 (3)0.014 (3)
C190.045 (3)0.080 (3)0.047 (3)0.018 (3)0.001 (2)0.000 (3)
C200.042 (3)0.050 (3)0.050 (3)0.002 (2)0.006 (2)0.001 (2)
C210.055 (3)0.043 (2)0.045 (3)0.005 (2)0.003 (2)0.006 (2)
C220.075 (3)0.045 (3)0.043 (3)0.015 (2)0.002 (3)0.003 (2)
C230.077 (3)0.052 (3)0.052 (3)0.002 (3)0.021 (3)0.006 (3)
C240.059 (3)0.043 (2)0.059 (3)0.004 (2)0.009 (3)0.004 (2)
C250.044 (2)0.033 (2)0.044 (2)0.0062 (19)0.003 (2)0.002 (2)
C260.033 (2)0.035 (2)0.046 (2)0.0043 (18)0.008 (2)0.002 (2)
C270.044 (2)0.043 (2)0.057 (3)0.007 (2)0.003 (2)0.002 (2)
C280.054 (3)0.046 (3)0.066 (3)0.005 (2)0.010 (3)0.013 (3)
C290.060 (3)0.053 (3)0.047 (3)0.004 (2)0.005 (2)0.017 (2)
C300.047 (3)0.050 (3)0.044 (3)0.005 (2)0.003 (2)0.002 (2)
O10.110 (3)0.098 (3)0.050 (2)0.035 (2)0.013 (2)0.014 (2)
O1S0.088 (3)0.082 (3)0.179 (5)0.010 (2)0.029 (3)0.043 (3)
C1S0.088 (4)0.071 (4)0.156 (6)0.005 (3)0.022 (4)0.000 (4)
O2S0.218 (6)0.121 (4)0.195 (6)0.030 (5)0.014 (6)0.055 (4)
C2S0.176 (8)0.128 (6)0.161 (8)0.077 (7)0.073 (7)0.047 (6)
O3S0.079 (2)0.111 (3)0.081 (3)0.002 (2)0.013 (2)0.002 (2)
Geometric parameters (Å, º) top
Fe1—N121.636 (4)C11—C121.353 (5)
Fe1—C9A1.926 (5)C11—H11A0.9300
Fe1—C11A1.932 (5)C12—C131.376 (6)
Fe1—C8A1.936 (4)C12—H12A0.9300
Fe1—C10A1.942 (5)C13—C141.353 (6)
Fe1—C7A1.947 (5)C13—H13A0.9300
Cu1—N31.999 (3)C14—C151.368 (5)
Cu1—N22.002 (3)C14—H14A0.9300
Cu1—N62.006 (3)C15—C161.476 (5)
Cu1—N42.006 (3)C16—C171.370 (5)
Cu1—N12.018 (4)C17—C181.360 (6)
Cu1—N52.035 (3)C17—H17A0.9300
N1—C51.340 (5)C18—C191.374 (6)
N1—C11.341 (5)C18—H18A0.9300
N2—C101.333 (5)C19—C201.374 (6)
N2—C61.347 (5)C19—H19A0.9300
N3—C111.331 (5)C20—H20A0.9300
N3—C151.349 (5)C21—C221.362 (6)
N4—C201.321 (5)C21—H21A0.9300
N4—C161.350 (5)C22—C231.364 (6)
N5—C211.340 (5)C22—H22A0.9300
N5—C251.359 (5)C23—C241.374 (6)
N6—C261.336 (5)C23—H23A0.9300
N6—C301.342 (5)C24—C251.364 (5)
N7—C7A1.138 (5)C24—H24A0.9300
N8—C8A1.147 (5)C25—C261.467 (5)
N9—C9A1.144 (5)C26—C271.389 (5)
N10—C10A1.130 (5)C27—C281.371 (6)
N11—C11A1.149 (5)C27—H27A0.9300
N12—O11.143 (4)C28—C291.349 (6)
C1—C21.337 (6)C28—H28A0.9300
C1—H1A0.9300C29—C301.379 (5)
C2—C31.363 (7)C29—H29A0.9300
C2—H2A0.9300C30—H30A0.9300
C3—C41.351 (7)O1S—C1S1.342 (6)
C3—H3A0.9300O1S—H1S0.8200
C4—C51.377 (6)C1S—H1SA0.9600
C4—H4A0.9300C1S—H1SB0.9600
C5—C61.455 (6)C1S—H1SC0.9602
C6—C71.390 (6)O2S—C2S1.384 (8)
C7—C81.389 (8)O2S—H2S0.8201
C7—H7A0.9300C2S—H2SA0.9599
C8—C91.345 (8)C2S—H2SB0.9601
C8—H8A0.9300C2S—H2SC0.9601
C9—C101.365 (6)O3S—H3SA0.8500
C9—H9A0.9300O3S—H3SB0.8499
C10—H10A0.9300
N12—Fe1—C9A91.36 (17)N2—C10—C9123.3 (5)
N12—Fe1—C11A175.03 (17)N2—C10—H10A118.4
C9A—Fe1—C11A86.19 (17)C9—C10—H10A118.4
N12—Fe1—C8A92.83 (18)N11—C11A—Fe1178.5 (4)
C9A—Fe1—C8A90.23 (16)N3—C11—C12123.1 (4)
C11A—Fe1—C8A82.87 (17)N3—C11—H11A118.4
N12—Fe1—C10A98.79 (18)C12—C11—H11A118.4
C9A—Fe1—C10A88.45 (16)C11—C12—C13119.0 (4)
C11A—Fe1—C10A85.48 (17)C11—C12—H12A120.5
C8A—Fe1—C10A168.33 (19)C13—C12—H12A120.5
N12—Fe1—C7A96.65 (17)C14—C13—C12118.6 (4)
C9A—Fe1—C7A171.75 (17)C14—C13—H13A120.7
C11A—Fe1—C7A85.97 (16)C12—C13—H13A120.7
C8A—Fe1—C7A91.33 (16)C13—C14—C15120.0 (4)
C10A—Fe1—C7A88.39 (16)C13—C14—H14A120.0
N3—Cu1—N2175.02 (14)C15—C14—H14A120.0
N3—Cu1—N694.69 (12)N3—C15—C14121.5 (4)
N2—Cu1—N687.97 (12)N3—C15—C16113.8 (3)
N3—Cu1—N480.07 (13)C14—C15—C16124.7 (4)
N2—Cu1—N497.75 (13)N4—C16—C17121.4 (4)
N6—Cu1—N4171.67 (13)N4—C16—C15114.3 (3)
N3—Cu1—N195.46 (13)C17—C16—C15124.3 (4)
N2—Cu1—N180.02 (15)C18—C17—C16119.5 (4)
N6—Cu1—N196.94 (13)C18—C17—H17A120.2
N4—Cu1—N190.04 (12)C16—C17—H17A120.2
N3—Cu1—N589.03 (13)C17—C18—C19119.4 (4)
N2—Cu1—N595.60 (14)C17—C18—H18A120.3
N6—Cu1—N579.41 (13)C19—C18—H18A120.3
N4—Cu1—N593.94 (13)C18—C19—C20118.4 (4)
N1—Cu1—N5174.46 (13)C18—C19—H19A120.8
C5—N1—C1117.7 (4)C20—C19—H19A120.8
C5—N1—Cu1115.4 (3)N4—C20—C19122.7 (4)
C1—N1—Cu1126.8 (3)N4—C20—H20A118.6
C10—N2—C6118.6 (4)C19—C20—H20A118.6
C10—N2—Cu1126.3 (3)N5—C21—C22122.6 (4)
C6—N2—Cu1114.7 (3)N5—C21—H21A118.7
C11—N3—C15117.6 (3)C22—C21—H21A118.7
C11—N3—Cu1126.6 (3)C21—C22—C23119.3 (4)
C15—N3—Cu1115.8 (3)C21—C22—H22A120.4
C20—N4—C16118.6 (3)C23—C22—H22A120.4
C20—N4—Cu1126.0 (3)C22—C23—C24119.1 (4)
C16—N4—Cu1115.4 (3)C22—C23—H23A120.5
C21—N5—C25117.8 (3)C24—C23—H23A120.5
C21—N5—Cu1126.9 (3)C25—C24—C23119.5 (4)
C25—N5—Cu1115.2 (3)C25—C24—H24A120.2
C26—N6—C30118.3 (3)C23—C24—H24A120.2
C26—N6—Cu1116.3 (3)N5—C25—C24121.6 (4)
C30—N6—Cu1125.3 (3)N5—C25—C26113.6 (3)
O1—N12—Fe1174.4 (4)C24—C25—C26124.8 (4)
C2—C1—N1123.6 (5)N6—C26—C27121.8 (4)
C2—C1—H1A118.2N6—C26—C25115.2 (3)
N1—C1—H1A118.2C27—C26—C25123.0 (4)
C1—C2—C3119.1 (5)C28—C27—C26118.8 (4)
C1—C2—H2A120.5C28—C27—H27A120.6
C3—C2—H2A120.5C26—C27—H27A120.6
C4—C3—C2118.7 (5)C29—C28—C27119.5 (4)
C4—C3—H3A120.7C29—C28—H28A120.2
C2—C3—H3A120.7C27—C28—H28A120.2
C3—C4—C5120.5 (5)C28—C29—C30119.6 (4)
C3—C4—H4A119.7C28—C29—H29A120.2
C5—C4—H4A119.7C30—C29—H29A120.2
N1—C5—C4120.5 (5)N6—C30—C29121.9 (4)
N1—C5—C6113.9 (4)N6—C30—H30A119.0
C4—C5—C6125.6 (5)C29—C30—H30A119.0
N2—C6—C7120.9 (5)C1S—O1S—H1S109.6
N2—C6—C5115.6 (4)O1S—C1S—H1SA109.6
C7—C6—C5123.5 (5)O1S—C1S—H1SB109.4
N7—C7A—Fe1178.1 (4)H1SA—C1S—H1SB109.5
C8—C7—C6118.4 (5)O1S—C1S—H1SC109.4
C8—C7—H7A120.8H1SA—C1S—H1SC109.5
C6—C7—H7A120.8H1SB—C1S—H1SC109.5
N8—C8A—Fe1178.6 (4)C2S—O2S—H2S109.7
C9—C8—C7120.2 (5)O2S—C2S—H2SA109.7
C9—C8—H8A119.9O2S—C2S—H2SB109.3
C7—C8—H8A119.9H2SA—C2S—H2SB109.5
N9—C9A—Fe1177.3 (4)O2S—C2S—H2SC109.4
C8—C9—C10118.7 (6)H2SA—C2S—H2SC109.5
C8—C9—H9A120.7H2SB—C2S—H2SC109.5
C10—C9—H9A120.7H3SA—O3S—H3SB105.2
N10—C10A—Fe1178.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3S—H3SB···N90.852.042.870 (5)165
O3S—H3SA···N7i0.852.253.058 (5)158
O1S—H1S···N8ii0.822.082.831 (5)151
O2S—H2S···O3Siii0.821.962.746 (7)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3S—H3SB···N90.852.042.870 (5)165.2
O3S—H3SA···N7i0.852.253.058 (5)158.1
O1S—H1S···N8ii0.822.082.831 (5)151.4
O2S—H2S···O3Siii0.821.962.746 (7)160.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y+3/2, z+1/2.
Acknowledgements top

no acknowledgements

references
References top

Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.

Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.

Dong, W., Si, S.-F., Liao, D.-Z., Jiang, Z.-H. & Yan, A.-P. (2003). J. Coord. Chem. 56, 531–538.

Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.

Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.

Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, A., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607.

Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shyu, H. L. & Wei, H. H. (1999). J. Coord. Chem. 47, 319–330.

Shyu, H. L., Wei, H. H. & Wang, Y. (1997). Inorg. Chim. Acta, 258, 81–86.

Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.

Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Cormary, B., Malfant, I. & Jezierska, J. (2009a). Z. Anorg. Allg. Chem. 635, 2316–2323.

Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009b). Inorg. Chem. Commun. 12, 890–894.

Wang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835–m836.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Zhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2004). Acta Cryst. E60, m1293–m1295.