organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o592-o593

Tri­methyl­ammonium 5-(2,4-di­nitro­phenyl)-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate 0.125-hydrate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 6 March 2013; accepted 21 March 2013; online 28 March 2013)

The asymmetric unit of the title salt C3H10N+·C10H5N4O7·0.125H2O [trivial name: trimethyl­ammonium 5-(2,4-dinitro­phen­yl)barbiturate 0.125-hydrate], contains two independent cations, two independent anions and a 0.25-occupancy solvent water mol­ecule. In one of the cations, the C atoms are disordered over two sets of sites with refined occupancies of 0.538 (8) and 0.462 (8). In the anions, the dihedral angles between the pyrimidine and benzene rings are 42.77 (6) and 46.55 (7)°. In the crystal, N—H⋯O hydrogen bonds connect anions and cations into chains along [010]. Within these chains, R22(8) ring motifs are formed by inversion-related barbiturate anions. The H atoms of the partial occupancy water mol­ecule were not located nor included in the refinement.

Related literature

For the different types of anionic sigma complexes, see: Terrier (1982[Terrier, F. (1982). Chem. Rev. 82, 77-152.]); Al-Kaysi et al. (2005[Al-Kaysi, R. O., Mueller, A. M., Ahn, T. S., Lee, S. & Bardeen, C. J. (2005). Langmuir, 21, 7990-7994.]). For the utility of spiro Meisenheimer complexes, see: Gallardo et al. (2007[Gallardo, I. & Guirado, G. (2007). Electrochem. Commun. 9, 173-179.]); Al-Kaysi et al. 2008[Al-Kaysi, R. O., Gallardo, I. & Guirado, G. (2008). Molecules, 13, 1282-1302.]). For the biological activity of carbanionic sigma complexes related to the title compound, see: Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]); Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 225-260. UK: WSEAS Publications.]). For the crystal structures of related barbiturates, see: Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Kalaivani et al. (2012[Kalaivani, D., Buvaneswari, M. & Rajeswari, S. (2012). Acta Cryst. E68, o29-o30.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10N+·C10H5N4O7·0.125H2O

  • Mr = 355.29

  • Monoclinic, P 21 /c

  • a = 15.0410 (5) Å

  • b = 10.5460 (3) Å

  • c = 20.4170 (8) Å

  • β = 94.953 (1)°

  • V = 3226.50 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.987

  • 26803 measured reflections

  • 5517 independent reflections

  • 3780 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.02

  • 5517 reflections

  • 516 parameters

  • 36 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O9i 0.80 (2) 2.09 (2) 2.888 (2) 175 (2)
N2—H2A⋯O8ii 0.89 (3) 2.02 (3) 2.905 (2) 173 (2)
N5—H5A⋯O3i 0.84 (2) 2.10 (2) 2.931 (2) 169 (2)
N6—H6A⋯O1ii 0.85 (2) 2.04 (3) 2.889 (2) 177 (2)
N9—H9A⋯O10 1.04 (3) 1.62 (4) 2.650 (2) 167 (3)
N10—H10⋯O2 1.02 (4) 1.63 (4) 2.644 (3) 173 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006)[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many different types of anionic sigma complexes such as carbon bonded, nitrogen bonded, oxygen bonded and spiro Meisenheimer complexes have been reported by different group of scientists (Terrier, 1982; Al-Kaysi et al., 2005). Among these, spiro Meisenheimer complexes have notable photophysical and redox properties which have enabled their utility in the field of electro chemistry (Gallardo et al., 2007; Al-Kaysi et al.,2008). In our laboratories, we have synthesized new carbanionic sigma complexes from aromatic nitro compounds (1-Chloro-2,4-dinitrobenzene and 1-chloro-2,4,6-trinitrobenzene) and the ketone [pyrimidine-2,4,6(1H,3H,5H)-trione (barbituric acid)] in the presence of tertiary amines which have noticable anticonvulsant/hypnotic activities (Kalaivani & Malarvizhi, 2009; Kalaivani & Buvaneswari, 2010). In this article, we report another new type of carbanionic sigma complex which is a pyrimidine derivative (barbiturate), isolated from the ethanolic solutions of 1-chloro-2,4-dinitrobenzene, barbituric acid and trimethylamine.

The asymmetric unit of the title compund (Fig. 1) comprises of two cations and two anions. In addition, the asymmetric unit contains a 0.25 occupancy water molecule. The bond lengths and bond angles of the title compound are comparible with those of related barbiturates (Kalaivani & Malarvizhi, 2009; Kalaivani et al., 2012). In one the cations the C atoms C24, C25 and C26 are disordered over two sets of sites with refined occupancies of 0.538 (8) and 0.462 (8). Since there are two nitro groups attached to the benzene rings in the anions a steric effect may operate which is reflected in the dihedral angles between the benzene and pyrimidine rings (42.77 (6) and 46.55 (7)°). The nitro group para with respect to barbiturate ring are approximately planar (8.2 (4) and 6.0 (5)°) with benzene ring and are effectively involved in the delocalisation of electrons. The nitro groups ortho with respect to barbiturate ring form dihedral angles of 40.7 (3) and 33.8 (3)° with the benzene rings. In the crystal, N—H···O hydrogen bonds connect anions and cations into one-dimensional chains along [010]. Within these chains R22(8)ring motifs (Bernstein et al., 1995) are formed by inversion-related barbiturate anions (Fig. 2).

Related literature top

For the different types of anionic sigma complexes, see: Terrier (1982); Al-Kaysi et al. (2005). For the utility of spiro Meisenheimer complexes, see: Gallardo et al. (2007); Al-Kaysi et al. 2008). For the biological activity of carbanionic sigma complexes related to the title compound, see: Kalaivani et al. (2008); Kalaivani & Buvaneswari (2010). For the crystal structures of related barbiturates, see: Kalaivani & Malarvizhi (2009); Kalaivani et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

1-Chloro-2,4-dinitrobenzene (2.02 g, 0.01 mol) was dissolved in 20 ml of absolute alcohol. Barbituric acid (1.28 g, 0.01 mol) was also dissolved in 30 ml of absolute alcohol. After mixing these two solutions, 3 ml of trimethylamine (0.03 mol) was added and shaken well for 6 hrs. The solution was filtered and the clear solution was kept as such at room temperature. After a period of four weeks, dark shiny maroon red coloured crystals formed from the solution. The crystals were filtered and washed with 30 ml of dry ether and recrystallized from absolute ethanol (M.p: 545K; yield: 80%). Good quality crystals for single crystal X-ray studies were obtained by slow evaporation of ethanol at room temperature.

Refinement top

The N-bound H atoms were located in a difference electron density map and refind with a N—H distance restraint of 0.90 (2) Å. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. The H atoms of the partial occupancy water molecule were not located nor are they included in the refinement. They are however included in the molecular formula.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal atructure of the title compound with hydrogen bonds shown as dashed lines.
Trimethylammonium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate 0.125-hydrate top
Crystal data top
C3H10N+·C10H5N4O7·0.125H2OF(000) = 1482
Mr = 355.29Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7398 reflections
a = 15.0410 (5) Åθ = 2.3–23.9°
b = 10.5460 (3) ŵ = 0.12 mm1
c = 20.4170 (8) ÅT = 293 K
β = 94.953 (1)°Needle, red
V = 3226.50 (19) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5517 independent reflections
Radiation source: fine-focus sealed tube3780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and ϕ scansθmax = 24.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.960, Tmax = 0.987k = 1212
26803 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0564P)2 + 1.2781P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5517 reflectionsΔρmax = 0.21 e Å3
516 parametersΔρmin = 0.21 e Å3
36 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (4)
Crystal data top
C3H10N+·C10H5N4O7·0.125H2OV = 3226.50 (19) Å3
Mr = 355.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.0410 (5) ŵ = 0.12 mm1
b = 10.5460 (3) ÅT = 293 K
c = 20.4170 (8) Å0.30 × 0.20 × 0.20 mm
β = 94.953 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5517 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3780 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.987Rint = 0.039
26803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04536 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
5517 reflectionsΔρmin = 0.21 e Å3
516 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.49436 (14)0.3608 (2)0.41756 (12)0.0407 (5)
C20.34407 (14)0.3929 (2)0.36471 (11)0.0397 (5)
C30.33767 (13)0.26371 (19)0.34916 (11)0.0375 (5)
C40.40782 (14)0.18045 (19)0.37118 (11)0.0373 (5)
C50.25811 (14)0.2167 (2)0.31023 (11)0.0412 (5)
C60.17278 (15)0.2572 (2)0.32317 (13)0.0508 (6)
H60.16720.31670.35620.061*
C70.09634 (16)0.2114 (3)0.28831 (15)0.0630 (8)
H70.04060.24310.29620.076*
C80.10415 (18)0.1187 (3)0.24204 (14)0.0611 (8)
C90.18518 (19)0.0769 (3)0.22658 (13)0.0603 (7)
H90.18950.01460.19470.072*
C100.26101 (15)0.1286 (2)0.25901 (12)0.0472 (6)
C110.48116 (14)0.24816 (19)0.58140 (11)0.0399 (5)
C120.38713 (14)0.06518 (19)0.54816 (11)0.0382 (5)
C130.31760 (13)0.14908 (19)0.52559 (11)0.0376 (5)
C140.33028 (13)0.28091 (19)0.53044 (11)0.0389 (5)
C150.23348 (14)0.1023 (2)0.49394 (12)0.0422 (6)
C160.23265 (17)0.0110 (2)0.44466 (13)0.0525 (6)
H160.28620.02680.43590.063*
C170.1550 (2)0.0257 (2)0.40826 (14)0.0646 (8)
H170.15620.08760.37590.077*
C180.07617 (18)0.0312 (3)0.42094 (16)0.0675 (9)
C190.07232 (17)0.1193 (3)0.46899 (16)0.0670 (8)
H190.01830.15690.47690.080*
C200.14985 (15)0.1520 (2)0.50569 (14)0.0530 (7)
C210.2649 (2)0.6911 (3)0.4683 (2)0.0951 (12)
H21A0.23300.76990.46470.143*
H21B0.28110.66600.42570.143*
H21C0.31790.70120.49760.143*
C220.1287 (2)0.5725 (3)0.44899 (19)0.0935 (11)
H22A0.09550.50240.46430.140*
H22B0.14620.55400.40590.140*
H22C0.09210.64730.44720.140*
C230.1874 (4)0.6194 (5)0.5611 (2)0.1438 (19)
H23A0.16110.70200.56320.216*
H23B0.24120.61620.59010.216*
H23C0.14620.55670.57430.216*
N10.48201 (12)0.23460 (17)0.40610 (10)0.0400 (5)
N20.42297 (12)0.43476 (18)0.39760 (10)0.0450 (5)
N30.34457 (16)0.0974 (2)0.23077 (11)0.0627 (6)
N40.0238 (2)0.0651 (3)0.20626 (16)0.0905 (9)
N50.46542 (12)0.12161 (16)0.57581 (10)0.0411 (5)
N60.41223 (12)0.32321 (17)0.55772 (10)0.0412 (5)
N70.13846 (15)0.2384 (2)0.56078 (15)0.0695 (7)
N80.0066 (2)0.0018 (4)0.38078 (18)0.0998 (11)
N90.20830 (14)0.5938 (2)0.49399 (12)0.0585 (6)
N100.31143 (19)0.5901 (3)0.23666 (15)0.0822 (8)
C240.3960 (6)0.6339 (15)0.2289 (5)0.139 (4)0.538 (8)
H24A0.41180.69790.26120.208*0.538 (8)
H24B0.39750.66940.18570.208*0.538 (8)
H24C0.43760.56500.23430.208*0.538 (8)
C250.2718 (9)0.4906 (11)0.1921 (8)0.100 (3)0.538 (8)
H25A0.21270.47130.20350.149*0.538 (8)
H25B0.30800.41560.19630.149*0.538 (8)
H25C0.26900.52040.14750.149*0.538 (8)
C260.2437 (8)0.7042 (9)0.2306 (6)0.166 (5)0.538 (8)
H26A0.18480.67380.23670.249*0.538 (8)
H26B0.24390.74170.18780.249*0.538 (8)
H26C0.26090.76650.26350.249*0.538 (8)
C24'0.4071 (5)0.5293 (11)0.2295 (5)0.099 (3)0.462 (8)
H24D0.44830.55830.26490.149*0.462 (8)
H24E0.42780.55450.18830.149*0.462 (8)
H24F0.40270.43860.23110.149*0.462 (8)
C25'0.2503 (10)0.5448 (16)0.1872 (11)0.133 (6)0.462 (8)
H25D0.24470.45460.19130.200*0.462 (8)
H25E0.27070.56480.14510.200*0.462 (8)
H25F0.19330.58390.19090.200*0.462 (8)
C26'0.3305 (12)0.7243 (9)0.2384 (7)0.158 (5)0.462 (8)
H26D0.37140.74310.27580.238*0.462 (8)
H26E0.27610.77080.24140.238*0.462 (8)
H26F0.35670.74840.19890.238*0.462 (8)
O10.56366 (10)0.40504 (14)0.44398 (9)0.0549 (5)
O20.28668 (10)0.47693 (14)0.34922 (9)0.0503 (4)
O30.40882 (10)0.06395 (13)0.36237 (8)0.0474 (4)
O40.03283 (18)0.0250 (3)0.16961 (14)0.1164 (10)
O50.04734 (18)0.1135 (3)0.21523 (16)0.1303 (11)
O60.35400 (17)0.0101 (2)0.21072 (13)0.1034 (8)
O70.39882 (13)0.1810 (2)0.22575 (10)0.0735 (6)
O80.55192 (10)0.29224 (14)0.60553 (9)0.0517 (4)
O90.38360 (10)0.05263 (13)0.54731 (9)0.0501 (4)
O100.27374 (10)0.36162 (14)0.51066 (9)0.0544 (5)
O110.18612 (14)0.2261 (2)0.61110 (12)0.0802 (6)
O120.07827 (14)0.3173 (2)0.55353 (15)0.1107 (9)
O130.07427 (19)0.0598 (3)0.39067 (16)0.1369 (13)
O140.0034 (2)0.0854 (4)0.34104 (18)0.1460 (14)
O150.3059 (7)0.8311 (10)0.3338 (6)0.112 (3)0.25
H1A0.5215 (16)0.188 (2)0.4194 (12)0.047 (7)*
H2A0.4307 (17)0.519 (3)0.4003 (13)0.065 (8)*
H5A0.5069 (16)0.075 (2)0.5918 (12)0.048 (7)*
H6A0.4201 (15)0.403 (2)0.5586 (11)0.046 (7)*
H9A0.242 (2)0.507 (3)0.4982 (16)0.100 (10)*
H100.301 (2)0.553 (3)0.2815 (19)0.101 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (12)0.0329 (11)0.0502 (15)0.0000 (10)0.0031 (11)0.0029 (10)
C20.0346 (12)0.0361 (11)0.0472 (14)0.0022 (10)0.0031 (10)0.0048 (10)
C30.0345 (11)0.0343 (11)0.0425 (13)0.0005 (9)0.0043 (10)0.0018 (10)
C40.0378 (12)0.0331 (11)0.0405 (13)0.0002 (9)0.0015 (10)0.0010 (10)
C50.0413 (13)0.0330 (11)0.0482 (14)0.0021 (9)0.0025 (11)0.0100 (10)
C60.0417 (14)0.0448 (13)0.0650 (17)0.0020 (11)0.0008 (12)0.0049 (12)
C70.0403 (14)0.0642 (17)0.082 (2)0.0041 (12)0.0072 (14)0.0227 (16)
C80.0547 (17)0.0672 (18)0.0574 (18)0.0231 (14)0.0187 (14)0.0147 (15)
C90.0689 (19)0.0590 (16)0.0505 (17)0.0171 (14)0.0097 (14)0.0023 (13)
C100.0492 (14)0.0428 (13)0.0478 (15)0.0063 (11)0.0054 (12)0.0035 (11)
C110.0346 (12)0.0325 (11)0.0520 (15)0.0001 (9)0.0004 (11)0.0023 (10)
C120.0351 (12)0.0315 (11)0.0473 (14)0.0007 (9)0.0004 (10)0.0007 (10)
C130.0302 (11)0.0312 (11)0.0503 (14)0.0010 (9)0.0020 (10)0.0023 (10)
C140.0323 (12)0.0327 (11)0.0509 (14)0.0025 (9)0.0005 (10)0.0037 (10)
C150.0361 (12)0.0334 (11)0.0557 (15)0.0035 (9)0.0049 (11)0.0116 (11)
C160.0523 (15)0.0396 (13)0.0634 (17)0.0073 (11)0.0073 (13)0.0049 (12)
C170.077 (2)0.0494 (15)0.0633 (19)0.0224 (14)0.0185 (15)0.0129 (13)
C180.0473 (17)0.076 (2)0.075 (2)0.0262 (15)0.0223 (15)0.0277 (17)
C190.0365 (14)0.078 (2)0.085 (2)0.0084 (13)0.0068 (14)0.0288 (18)
C200.0357 (13)0.0511 (14)0.0710 (18)0.0039 (11)0.0030 (12)0.0156 (13)
C210.073 (2)0.0631 (19)0.146 (3)0.0026 (16)0.014 (2)0.024 (2)
C220.0570 (19)0.099 (3)0.121 (3)0.0029 (17)0.0150 (19)0.006 (2)
C230.202 (5)0.153 (4)0.079 (3)0.050 (4)0.025 (3)0.009 (3)
N10.0356 (10)0.0291 (10)0.0535 (13)0.0048 (8)0.0074 (9)0.0019 (9)
N20.0393 (11)0.0268 (10)0.0666 (14)0.0017 (8)0.0092 (10)0.0007 (9)
N30.0672 (15)0.0638 (15)0.0561 (15)0.0007 (13)0.0006 (12)0.0126 (12)
N40.072 (2)0.116 (3)0.078 (2)0.0380 (19)0.0195 (16)0.0198 (19)
N50.0321 (10)0.0303 (10)0.0591 (13)0.0031 (8)0.0073 (9)0.0012 (9)
N60.0375 (10)0.0248 (9)0.0595 (13)0.0011 (8)0.0055 (9)0.0018 (9)
N70.0423 (13)0.0651 (15)0.103 (2)0.0020 (12)0.0183 (14)0.0020 (15)
N80.073 (2)0.120 (3)0.098 (3)0.047 (2)0.0348 (19)0.046 (2)
N90.0573 (13)0.0423 (12)0.0743 (17)0.0121 (10)0.0035 (12)0.0044 (11)
N100.093 (2)0.0820 (19)0.0712 (19)0.0091 (16)0.0058 (16)0.0140 (16)
C240.078 (5)0.220 (12)0.120 (6)0.044 (7)0.019 (5)0.010 (9)
C250.077 (7)0.147 (9)0.071 (5)0.001 (6)0.016 (5)0.007 (6)
C260.163 (9)0.097 (6)0.240 (11)0.042 (6)0.033 (9)0.079 (7)
C24'0.070 (5)0.145 (9)0.085 (6)0.017 (6)0.016 (4)0.036 (7)
C25'0.070 (8)0.214 (17)0.107 (8)0.013 (9)0.041 (6)0.016 (12)
C26'0.199 (12)0.099 (7)0.168 (9)0.004 (8)0.043 (10)0.033 (7)
O10.0434 (9)0.0375 (8)0.0794 (13)0.0030 (7)0.0200 (9)0.0010 (8)
O20.0409 (9)0.0354 (8)0.0724 (12)0.0064 (7)0.0071 (8)0.0059 (8)
O30.0463 (9)0.0297 (8)0.0637 (11)0.0029 (7)0.0088 (8)0.0038 (7)
O40.113 (2)0.138 (2)0.093 (2)0.0637 (18)0.0212 (16)0.0162 (18)
O50.0599 (15)0.183 (3)0.142 (3)0.0275 (18)0.0307 (16)0.010 (2)
O60.1144 (19)0.0792 (16)0.119 (2)0.0062 (14)0.0223 (16)0.0437 (15)
O70.0633 (12)0.0905 (15)0.0681 (14)0.0123 (11)0.0136 (10)0.0077 (11)
O80.0375 (9)0.0384 (8)0.0757 (12)0.0049 (7)0.0147 (8)0.0018 (8)
O90.0439 (9)0.0267 (8)0.0772 (12)0.0019 (6)0.0098 (8)0.0011 (8)
O100.0398 (9)0.0344 (8)0.0866 (13)0.0058 (7)0.0094 (8)0.0104 (8)
O110.0713 (14)0.0872 (15)0.0830 (16)0.0027 (11)0.0122 (12)0.0153 (13)
O120.0624 (13)0.1029 (18)0.169 (3)0.0362 (13)0.0214 (15)0.0064 (17)
O130.0581 (16)0.193 (3)0.151 (3)0.0261 (19)0.0423 (17)0.038 (2)
O140.135 (3)0.155 (3)0.135 (3)0.078 (2)0.064 (2)0.006 (2)
O150.096 (7)0.117 (8)0.120 (9)0.001 (6)0.012 (6)0.015 (7)
Geometric parameters (Å, º) top
C1—O11.224 (2)C22—N91.462 (4)
C1—N21.361 (3)C22—H22A0.9600
C1—N11.361 (3)C22—H22B0.9600
C2—O21.258 (2)C22—H22C0.9600
C2—N21.384 (3)C23—N91.458 (5)
C2—C31.401 (3)C23—H23A0.9600
C3—C41.416 (3)C23—H23B0.9600
C3—C51.465 (3)C23—H23C0.9600
C4—O31.242 (2)N1—H1A0.80 (2)
C4—N11.394 (3)N2—H2A0.89 (3)
C5—C61.399 (3)N3—O71.212 (3)
C5—C101.402 (3)N3—O61.217 (3)
C6—C71.386 (3)N4—O51.213 (4)
C6—H60.9300N4—O41.225 (4)
C7—C81.372 (4)N5—H5A0.84 (2)
C7—H70.9300N6—H6A0.85 (2)
C8—C91.359 (4)N7—O111.208 (3)
C8—N41.470 (4)N7—O121.229 (3)
C9—C101.381 (3)N8—O141.202 (5)
C9—H90.9300N8—O131.239 (5)
C10—N31.465 (3)N9—H9A1.04 (3)
C11—O81.225 (2)N10—C241.375 (8)
C11—N51.359 (3)N10—C25'1.390 (12)
C11—N61.360 (3)N10—C26'1.445 (9)
C12—O91.244 (2)N10—C251.480 (10)
C12—N51.394 (3)N10—C261.575 (8)
C12—C131.416 (3)N10—C24'1.593 (9)
C13—C141.406 (3)N10—H101.02 (4)
C13—C151.456 (3)C24—H24A0.9600
C14—O101.246 (2)C24—H24B0.9600
C14—N61.382 (3)C24—H24C0.9600
C15—C161.392 (3)C25—H25A0.9600
C15—C201.402 (3)C25—H25B0.9600
C16—C171.384 (3)C25—H25C0.9600
C16—H160.9300C26—H26A0.9600
C17—C181.374 (4)C26—H26B0.9600
C17—H170.9300C26—H26C0.9600
C18—C191.356 (4)C24'—H24D0.9600
C18—N81.471 (4)C24'—H24E0.9600
C19—C201.374 (3)C24'—H24F0.9600
C19—H190.9300C25'—H25D0.9600
C20—N71.469 (4)C25'—H25E0.9600
C21—N91.459 (4)C25'—H25F0.9600
C21—H21A0.9600C26'—H26D0.9600
C21—H21B0.9600C26'—H26E0.9600
C21—H21C0.9600C26'—H26F0.9600
O1—C1—N2122.3 (2)C2—N2—H2A116.5 (16)
O1—C1—N1123.1 (2)O7—N3—O6123.4 (3)
N2—C1—N1114.60 (19)O7—N3—C10118.5 (2)
O2—C2—N2116.01 (19)O6—N3—C10118.1 (2)
O2—C2—C3126.6 (2)O5—N4—O4124.4 (3)
N2—C2—C3117.34 (18)O5—N4—C8117.5 (4)
C2—C3—C4119.78 (18)O4—N4—C8118.2 (3)
C2—C3—C5119.30 (18)C11—N5—C12126.03 (19)
C4—C3—C5120.92 (18)C11—N5—H5A115.3 (16)
O3—C4—N1117.40 (18)C12—N5—H5A118.6 (16)
O3—C4—C3125.84 (19)C11—N6—C14125.57 (18)
N1—C4—C3116.76 (18)C11—N6—H6A118.0 (15)
C6—C5—C10115.5 (2)C14—N6—H6A116.5 (15)
C6—C5—C3120.9 (2)O11—N7—O12123.5 (3)
C10—C5—C3123.5 (2)O11—N7—C20119.0 (2)
C7—C6—C5122.1 (3)O12—N7—C20117.5 (3)
C7—C6—H6119.0O14—N8—O13125.1 (3)
C5—C6—H6119.0O14—N8—C18117.9 (4)
C8—C7—C6119.0 (3)O13—N8—C18116.9 (4)
C8—C7—H7120.5C23—N9—C21112.8 (3)
C6—C7—H7120.5C23—N9—C22112.8 (3)
C9—C8—C7121.6 (2)C21—N9—C22110.7 (3)
C9—C8—N4118.4 (3)C23—N9—H9A103.1 (18)
C7—C8—N4120.0 (3)C21—N9—H9A110.7 (18)
C8—C9—C10118.7 (3)C22—N9—H9A106.3 (18)
C8—C9—H9120.6C24—N10—C25'126.3 (12)
C10—C9—H9120.6C24—N10—C26'59.3 (6)
C9—C10—C5122.8 (2)C25'—N10—C26'118.1 (8)
C9—C10—N3115.1 (2)C24—N10—C25119.6 (8)
C5—C10—N3121.7 (2)C25'—N10—C2526.4 (8)
O8—C11—N5123.06 (19)C26'—N10—C25141.1 (8)
O8—C11—N6122.11 (19)C24—N10—C26109.4 (7)
N5—C11—N6114.83 (19)C25'—N10—C2679.7 (8)
O9—C12—N5117.75 (18)C26'—N10—C2651.6 (6)
O9—C12—C13126.16 (19)C25—N10—C26105.6 (6)
N5—C12—C13116.05 (18)C24—N10—C24'43.4 (6)
C14—C13—C12120.20 (18)C25'—N10—C24'109.9 (9)
C14—C13—C15118.26 (18)C26'—N10—C24'102.6 (7)
C12—C13—C15121.46 (18)C25—N10—C24'88.7 (7)
O10—C14—N6118.06 (18)C26—N10—C24'152.1 (5)
O10—C14—C13124.63 (19)C24—N10—H10116.9 (19)
N6—C14—C13117.29 (18)C25'—N10—H10112 (2)
C16—C15—C20115.5 (2)C26'—N10—H10114 (2)
C16—C15—C13120.5 (2)C25—N10—H10101 (2)
C20—C15—C13123.8 (2)C26—N10—H10102.1 (19)
C17—C16—C15122.4 (3)C24'—N10—H1098.3 (19)
C17—C16—H16118.8N10—C24—H24A109.5
C15—C16—H16118.8N10—C24—H24B109.5
C18—C17—C16118.6 (3)H24A—C24—H24B109.5
C18—C17—H17120.7N10—C24—H24C109.5
C16—C17—H17120.7H24A—C24—H24C109.5
C19—C18—C17121.8 (2)H24B—C24—H24C109.5
C19—C18—N8118.6 (3)N10—C25—H25A109.5
C17—C18—N8119.6 (4)N10—C25—H25B109.5
C18—C19—C20118.6 (3)H25A—C25—H25B109.5
C18—C19—H19120.7N10—C25—H25C109.5
C20—C19—H19120.7H25A—C25—H25C109.5
C19—C20—C15123.0 (3)H25B—C25—H25C109.5
C19—C20—N7115.0 (2)N10—C26—H26A109.5
C15—C20—N7121.9 (2)N10—C26—H26B109.5
N9—C21—H21A109.5H26A—C26—H26B109.5
N9—C21—H21B109.5N10—C26—H26C109.5
H21A—C21—H21B109.5H26A—C26—H26C109.5
N9—C21—H21C109.5H26B—C26—H26C109.5
H21A—C21—H21C109.5N10—C24'—H24D109.5
H21B—C21—H21C109.5N10—C24'—H24E109.5
N9—C22—H22A109.5H24D—C24'—H24E109.5
N9—C22—H22B109.5N10—C24'—H24F109.5
H22A—C22—H22B109.5H24D—C24'—H24F109.5
N9—C22—H22C109.5H24E—C24'—H24F109.5
H22A—C22—H22C109.5N10—C25'—H25D109.5
H22B—C22—H22C109.5N10—C25'—H25E109.5
N9—C23—H23A109.5H25D—C25'—H25E109.5
N9—C23—H23B109.5N10—C25'—H25F109.5
H23A—C23—H23B109.5H25D—C25'—H25F109.5
N9—C23—H23C109.5H25E—C25'—H25F109.5
H23A—C23—H23C109.5N10—C26'—H26D109.5
H23B—C23—H23C109.5N10—C26'—H26E109.5
C1—N1—C4125.44 (19)H26D—C26'—H26E109.5
C1—N1—H1A117.2 (17)N10—C26'—H26F109.5
C4—N1—H1A117.3 (17)H26D—C26'—H26F109.5
C1—N2—C2125.73 (19)H26E—C26'—H26F109.5
C1—N2—H2A117.0 (17)
O2—C2—C3—C4179.0 (2)C16—C17—C18—N8177.1 (2)
N2—C2—C3—C44.4 (3)C17—C18—C19—C200.1 (4)
O2—C2—C3—C51.0 (4)N8—C18—C19—C20178.7 (2)
N2—C2—C3—C5175.6 (2)C18—C19—C20—C152.8 (4)
C2—C3—C4—O3177.7 (2)C18—C19—C20—N7174.2 (2)
C5—C3—C4—O32.3 (4)C16—C15—C20—C193.7 (4)
C2—C3—C4—N12.0 (3)C13—C15—C20—C19170.6 (2)
C5—C3—C4—N1178.0 (2)C16—C15—C20—N7173.1 (2)
C2—C3—C5—C643.2 (3)C13—C15—C20—N712.6 (4)
C4—C3—C5—C6136.7 (2)O1—C1—N1—C4174.0 (2)
C2—C3—C5—C10137.7 (2)N2—C1—N1—C46.4 (3)
C4—C3—C5—C1042.4 (3)O3—C4—N1—C1176.6 (2)
C10—C5—C6—C71.0 (3)C3—C4—N1—C13.7 (3)
C3—C5—C6—C7178.1 (2)O1—C1—N2—C2176.8 (2)
C5—C6—C7—C83.5 (4)N1—C1—N2—C23.6 (3)
C6—C7—C8—C94.4 (4)O2—C2—N2—C1178.5 (2)
C6—C7—C8—N4177.6 (2)C3—C2—N2—C11.6 (4)
C7—C8—C9—C100.7 (4)C9—C10—N3—O7136.7 (2)
N4—C8—C9—C10178.7 (2)C5—C10—N3—O736.0 (3)
C8—C9—C10—C54.2 (4)C9—C10—N3—O640.0 (3)
C8—C9—C10—N3168.4 (2)C5—C10—N3—O6147.4 (3)
C6—C5—C10—C94.9 (3)C9—C8—N4—O5171.8 (3)
C3—C5—C10—C9174.2 (2)C7—C8—N4—O56.2 (4)
C6—C5—C10—N3167.2 (2)C9—C8—N4—O48.3 (4)
C3—C5—C10—N313.7 (3)C7—C8—N4—O4173.7 (3)
O9—C12—C13—C14179.0 (2)O8—C11—N5—C12179.1 (2)
N5—C12—C13—C141.3 (3)N6—C11—N5—C120.6 (3)
O9—C12—C13—C154.2 (4)O9—C12—N5—C11179.6 (2)
N5—C12—C13—C15178.1 (2)C13—C12—N5—C111.7 (3)
C12—C13—C14—O10178.4 (2)O8—C11—N6—C14179.3 (2)
C15—C13—C14—O101.5 (4)N5—C11—N6—C141.0 (3)
C12—C13—C14—N60.0 (3)O10—C14—N6—C11179.8 (2)
C15—C13—C14—N6176.9 (2)C13—C14—N6—C111.3 (3)
C14—C13—C15—C16130.0 (2)C19—C20—N7—O11144.5 (3)
C12—C13—C15—C1646.9 (3)C15—C20—N7—O1132.6 (4)
C14—C13—C15—C2044.1 (3)C19—C20—N7—O1233.2 (3)
C12—C13—C15—C20139.1 (2)C15—C20—N7—O12149.8 (2)
C20—C15—C16—C171.9 (3)C19—C18—N8—O14175.6 (3)
C13—C15—C16—C17172.6 (2)C17—C18—N8—O145.6 (4)
C15—C16—C17—C180.6 (4)C19—C18—N8—O134.6 (4)
C16—C17—C18—C191.7 (4)C17—C18—N8—O13174.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O9i0.80 (2)2.09 (2)2.888 (2)175 (2)
N2—H2A···O8ii0.89 (3)2.02 (3)2.905 (2)173 (2)
N5—H5A···O3i0.84 (2)2.10 (2)2.931 (2)169 (2)
N6—H6A···O1ii0.85 (2)2.04 (3)2.889 (2)177 (2)
N9—H9A···O101.04 (3)1.62 (4)2.650 (2)167 (3)
N10—H10···O21.02 (4)1.63 (4)2.644 (3)173 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC3H10N+·C10H5N4O7·0.125H2O
Mr355.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.0410 (5), 10.5460 (3), 20.4170 (8)
β (°) 94.953 (1)
V3)3226.50 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.960, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
26803, 5517, 3780
Rint0.039
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.02
No. of reflections5517
No. of parameters516
No. of restraints36
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O9i0.80 (2)2.09 (2)2.888 (2)175 (2)
N2—H2A···O8ii0.89 (3)2.02 (3)2.905 (2)173 (2)
N5—H5A···O3i0.84 (2)2.10 (2)2.931 (2)169 (2)
N6—H6A···O1ii0.85 (2)2.04 (3)2.889 (2)177 (2)
N9—H9A···O101.04 (3)1.62 (4)2.650 (2)167 (3)
N10—H10···O21.02 (4)1.63 (4)2.644 (3)173 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAl-Kaysi, R. O., Gallardo, I. & Guirado, G. (2008). Molecules, 13, 1282–1302.  Web of Science PubMed CAS
First citationAl-Kaysi, R. O., Mueller, A. M., Ahn, T. S., Lee, S. & Bardeen, C. J. (2005). Langmuir, 21, 7990–7994.  Web of Science PubMed CAS
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGallardo, I. & Guirado, G. (2007). Electrochem. Commun. 9, 173–179.  Web of Science CrossRef CAS
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 225–260. UK: WSEAS Publications.
First citationKalaivani, D., Buvaneswari, M. & Rajeswari, S. (2012). Acta Cryst. E68, o29–o30.  Web of Science CSD CrossRef CAS IUCr Journals
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTerrier, F. (1982). Chem. Rev. 82, 77–152.  CrossRef CAS Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o592-o593
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds