organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o558-o559

The chalcone derivative (E)-1-(4-fluoro­phen­yl)-3-(4-hy­dr­oxy-3-meth­­oxy­phen­yl)prop-2-en-1-one monohydrate

aDepartment of Chemistry, Xavier University of New Orleans, 1 Drexel Drive, Box 114, New Orleans, Louisiana 70125, USA, bDepartment of Chemistry, Xavier University of New Orleans, 1 Drexel Drive, Box 22, New Orleans, Louisiana 70125, USA, and cDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: flpayton@xula.edu

(Received 18 February 2013; accepted 12 March 2013; online 23 March 2013)

The title compound, C16H13FO3·H2O, has a cis disposition of the carbonyl and olefin bonds about the enone single bond. The arene rings are inclined to one another by 10.05 (6) Å. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds involving the water mol­ecules, forming loops which are, in turn, linked via O—H.·O and C—H⋯F hydrogen bonds, forming sheets lying parallel to (103). These networks are linked via ππ inter­actions [centroid–centroid distance = 3.641 (1) Å] involving inversion-related 4-fluoro­phenyl and 4-hy­droxy-3-meth­oxy­phenyl rings.

Related literature

For background information on the biological activity of chalcones, see: Anto et al. (1995[Anto, R. J., Sukumaran, K., Kuttan, G., Rao, M. N. A., Subbaraju, V. & Kuttan, R. (1995). Cancer Lett. 97, 33-37.]); Calliste et al. (2001[Calliste, C.-A., Le Bail, J.-C., Trouillas, P., Pouget, C., Habrioux, G., Chulia, A.-J. & Duroux, J.-L. (2001). Anticancer Res. 21, 3949-3956.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Kontogiorgis et al. (2008[Kontogiorgis, C., Mantzanidou, M. & Hadjipavlou-Litina, D. (2008). Mini Rev. Med. Chem. 8, 1224-1242.]); Ducki (2009[Ducki, S. (2009). Anti-Cancer Agent Med. Chem. 9, 336-347.]); Batovska & Todorova (2010[Batovska, D. I. & Todorova, I. T. (2010). Curr. Clin. Pharm. 5, 1-29.]); Batovska & Parushev (2010[Batovska, D. I. & Parushev, S. P. (2010). Int. J. Curr. Chem. 1, 217-236.]); Gupta et al. (2010[Gupta, D., Jain, D. K. & Trivedi, P. (2010). Int. J. Chem. Sci. 8, 649-654.]); Varinska et al. (2010[Varinska, L., Ivanova, L. & Mojzis, J. (2010). Int. J. Curr. Chem. 1, 63-71.]); Katsori & Hadjipavlou-Litina (2011[Katsori, A.-M. & Hadjipavlou-Litina, D. (2011). Expert Opin. Ther. Patents, 21, 1575-1596.]); Orlikova, et al. (2011[Orlikova, B., Tasdemir, D., Golais, F., Dicato, M. & Diederich, M. (2011). Genes Nutr. 6, 125-147.]); Yadav et al. (2011[Yadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295-309.]); Kathiravan et al. (2012[Kathiravan, M. K., Salake, A. B., Chothe, A. S., Dudhe, P. B., Watode, R. P., Mukta, M. S. & Gadhwe, S. (2012). Bioorgan. Med. Chem. 20, 5678-5698.]); Sahu et al. (2012[Sahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209-225.]). For related chalcone structures, see: Rabinovich (1970[Rabinovich, D. (1970). J. Chem. Soc. B, pp. 11-16.]); Ohkura et al. (1973[Ohkura, K., Kashino, S. & Haisa, M. (1973). Bull. Chem. Soc. Jpn, 46, 627-628.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Arai et al. (1994[Arai, H., Higashigaki, Y., Gotoh, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755-5758.]); Wu et al. (2006[Wu, M.-H., Yang, X.-H., Zou, W. D., Liu, W.-J. & Li, C. (2006). Z. Kristallogr. New Cryst. Struct. 221, 323-324.]); Teh et al. (2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2991-o2992.]); Yathirajan et al. (2006[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3631-o3632.], 2007[Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2200-o2201.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4059-o4060.]); Hayashi et al. (2009[Hayashi, N., Higuchi, H. & Ninomiya, K. (2009). X/π Interactions in Aromatic Heterocycles: Basic Principles and Recent Advances, Topics in Heterocyclic Chemistry: Heterocyclic Supramolecules II 18, edited by K. Matsumoto & N. Hayashi, pp. 1-35. Heidelberg, Germany: Springer.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FO3·H2O

  • Mr = 290.29

  • Monoclinic, P 21 /n

  • a = 9.787 (2) Å

  • b = 10.993 (3) Å

  • c = 12.781 (3) Å

  • β = 95.722 (4)°

  • V = 1368.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.34 × 0.27 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.]) Tmin = 0.845, Tmax = 0.978

  • 11909 measured reflections

  • 3203 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.02

  • 3203 reflections

  • 250 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.91 (2) 1.74 (2) 2.6479 (14) 173.5 (18)
O4—H4A⋯O1 0.88 (2) 1.90 (2) 2.7672 (15) 173 (2)
O4—H4B⋯O2ii 0.83 (3) 2.17 (3) 2.8485 (15) 139 (2)
O4—H4B⋯O3ii 0.83 (3) 2.38 (3) 3.1283 (15) 151 (2)
C8—H8⋯F1iii 0.94 (2) 2.48 (2) 3.3931 (17) 164 (1)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y-1, z; (iii) [-x+{\script{7\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chalcones, or 1,3-diaryl-2-propene-1-ones, constitute a relatively simple but pharmacologically important class of organic compounds with reported biological activity as antifungal agents (Kathiravan et al., 2012), antimicrobial (e.g., bacteria and protozoa) agents (Nowakowska, 2007; Gupta et al., 2010; Sahu et al., 2012), anti-inflammatory agents (Nowakowska, 2007; Sahu et al., 2012; Katsori & Hadjipavlou-Litina, 2011; Batovska & Todorova, 2010; Kontogiorgis et al., 2008) and potential cancer therapeutics (Yadav et al., 2011; Orlikova, et al., 2011; Batovska & Parushev, 2010; Varinska et al., 2010; Ducki, 2009). Variants bearing methoxy and hydroxy ring substituents have in some instances been observed to display enhanced efficacy (Calliste et al., 2001; Anto et al., 1995), possibly because of improved water solubility, improved binding ability to in vivo substrate(s) via hydrogen bond formation, or both. The ease with which a diverse array of chalcone derivatives can be synthesized and their usefulness for the further synthesis of other, biologically important heterocyclic compounds continue to motivate research involving their preparation and the evaluation of their properties. In the course of our own studies of chalcone derivatives, we have prepared (E)-1-(4-fluorophenyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-ene-1-one (I, Scheme 1) in a form suitable for a structural characterization by X-ray diffraction, the results of which are herein reported.

The title compound shows near planarity in the crystalline state, the twist angle between the aromatic rings being 10.05 (6)°. The greatest departure from the mean plane defined by all the nonhydrogen atoms is by C3, which deviates by 0.336 (1) Å from the plane of the molecule in Fig. 1. A cis disposition of the olefinic and carbonyl functional groups about the C1-C8 single bond is observed, which is the conformation found for chalcone itself in the crystalline state (Rabinovich, 1970; Ohkura et al., 1973; Arai et al., 1994; Wu et al., 2006) and for most of its simple derivatives. The trans orientation of olefinic and carbonyl functional groups about the enone single bond is observed less frequently (Teh et al., 2006; Yathirajan, et al., 2006; Yathirajan, et al., 2007; Butcher et al., 2007) in the crystalline state for chalcones, possibly because it is less conducive to stabilizing intermolecular π-π stacking interactions (see below). All other intramolecular structural parameters observed for I are typical of the compound type.

The packing arrangement of I can be described first by the association of two molecules at their 4-hydroxy-3-methoxy phenyl ends around an inversion center that occurs on the bc faces of the cell (Fig. 2). This arrangement is mediated by the presence of two water molecules, one canted slightly above the inversion center and the other below, each providing for four hydrogen bonds. One hydrogen atom from the water molecules is disposed halfway between the 3-methoxy and 4-hydroxy oxygen atoms of one molecule such that it serves as hydrogen bond donor to both (Fig. 2). The 4-hydroxy group of the molecule on the opposite side of the inversion center in turn serves as hydrogen bond donor to this same H2O molecule. This pattern of hydrogen bonds is replicated by the inversion center between the two molecules of I, thereby providing a network of six hydrogen bonds at this "head-to-head" interface of two molecules. The second hydrogen atom of H2O is directed away from the network just described and forms a hydrogen bond with the propen-2-one oxygen atom of a neighboring molecule (O1). The effect of this last hydrogen bond is to produce a two dimensional sheet arrangement of molecules that parallels the ab plane. This packing arrangement is reinforced by apparent π-π stacking interactions between the 4-F-phenyl group of one molecule and the 4-hydroxy-3-methoxy phenyl group of another (Fig. 2). The distance between the centers of these aromatic rings is 3.641 (1) Å, and at the point of closest approach (C7···C13) the two rings are 3.326 (2) Å apart. These values are within the range of distances (3.4-3.6 Å (Hunter & Sanders, 1990), 3.4-3.8 Å (Hayashi et al., 2009) that has been reported as indicative of π-π stacking. A second sheet network of molecules of I (not shown), is created by applying the glide plane operation to the sheets illustrated.

Related literature top

For background information on the biological activity of chalcones, see: Anto et al. (1995); Calliste et al. (2001); Nowakowska (2007); Kontogiorgis et al. (2008); Ducki (2009); Batovska & Todorova (2010); Batovska & Parushev (2010); Gupta et al. (2010); Varinska et al. (2010); Katsori & Hadjipavlou-Litina (2011); Orlikova, et al. (2011); Yadav et al. (2011); Kathiravan et al. (2012); Sahu et al. (2012). For related chalcone structures, see: Rabinovich (1970); Ohkura et al. (1973); Hunter & Sanders (1990); Arai et al. (1994); Wu et al. (2006); Teh et al. (2006); Yathirajan et al. (2006, 2007); Butcher et al. (2007); Hayashi et al. (2009).

Experimental top

(E)-1-(4-fluorophenyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-ene-1-one (I). Solid potassium hydroxide (20 g, 0.36 mol) was added to a mixture of vanillin (3.0 g, 0.020 mol) and 4-fluoroacetophenone (2.8 g, 0.020 mol) in 40 mL of methanol and 20 mL of H2O. The resulting solution was refluxed for 15 minutes and cooled in an ice bath. The reaction mixture was then diluted with 200 mL of H2O and stored in the refrigerator overnight. The precipitated yellow solid was collected by vacuum filtration and dried. The crude material was then purified via flash chromatography on silica gel with 20:80 ethyl acetate:hexanes as the eluting solvent to yield a dark yellow solid (I) in 35% yield. 1H NMR (CDCl3) δ (in ppm): 3.87 (s, 3H, -OCH3), 5.95 (s, 1H, -OH), 6.95 (d, 1H, Ar-5'H), 7.15 (d, 2H, Ar-3", 5"H), 7.17 (d, 1H, Ar-6'H), 7.25 (d, 1H, =CHa), 7.31 (s, 1H, Ar-2'H), 7.75 (d, 1H, =CHb), 8.04 (m, 2H, Ar-2",6"H). 13C NMR (acetone) δ (in ppm): 56.23 (OCH3), 110.27 (Ar-C2'), 115.15 (Ar-C3", C5"), 115.78 (Ar-C5'), 116.00 (Ar-C6'), 119.39 (Ar-C1'), 123.68 (=Cb), 127.53 (Ar-C2",C6"), 131.18 (Ar-C1"), 145.72 (Ar-C4'), 147.06 (=Ca), 148.65 (Ar-C3'), 166.96 (Ar-C4"), 189.21 (C=O). Diffraction quality, pale yellow, needle-shaped crystals were obtained by slow cooling of a warm solution in 1:1 H2O:EtOH.

Refinement top

Hydrogen atoms were identified in the later difference maps, and their positions were refined with isotropic displacement parameters that were approximately 1.2–1.5 times (for carbon) or 2.0 times (for oxygen) those of the atoms to which they were attached.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot drawn at the 50% probability level for (E)-1-(4-fluorophenyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-ene-1-one monohydrate.
[Figure 2] Fig. 2. Partial packing diagram showing the two-dimensional sheet network of molecules in the ab plane, the formation of which is governed by the occurrence of numerous hydrogen bonds with co-crystallized water molecules. Oxygen atoms are illustrated in red and fluorine atoms in light green. Hydrogen bonds are depicted with dashed lines.
(E)-1-(4-Fluorophenyl)–3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one monohydrate top
Crystal data top
C16H13FO3·H2OF(000) = 608
Mr = 290.29Dx = 1.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7532 reflections
a = 9.787 (2) Åθ = 28.3–2.5°
b = 10.993 (3) ŵ = 0.11 mm1
c = 12.781 (3) ÅT = 100 K
β = 95.722 (4)°Needle, pale yellow
V = 1368.2 (5) Å30.34 × 0.27 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
h = 1312
Tmin = 0.845, Tmax = 0.978k = 1314
11909 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.5324P]
where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13FO3·H2OV = 1368.2 (5) Å3
Mr = 290.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.787 (2) ŵ = 0.11 mm1
b = 10.993 (3) ÅT = 100 K
c = 12.781 (3) Å0.34 × 0.27 × 0.21 mm
β = 95.722 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
2855 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.978Rint = 0.022
11909 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110All H-atom parameters refined
S = 1.02Δρmax = 0.37 e Å3
3203 reflectionsΔρmin = 0.22 e Å3
250 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 606 frames, each of width 0.3 ° in ω, collected at ϕ = 0.00, 120.00 and 240.00 °. The scan time was 30 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.90355 (8)0.41277 (7)0.21518 (6)0.0284 (2)
O11.40402 (9)0.31928 (8)0.47673 (7)0.0243 (2)
O21.03808 (9)0.36973 (8)0.45389 (7)0.0216 (2)
H20.977 (2)0.3730 (17)0.5032 (16)0.043 (5)*
O31.23977 (10)0.34671 (8)0.33849 (7)0.0237 (2)
O41.14188 (10)0.39678 (10)0.40629 (8)0.0266 (2)
H4A1.227 (2)0.378 (2)0.4266 (16)0.052 (6)*
H4B1.141 (2)0.472 (2)0.3984 (17)0.063 (7)*
C11.45724 (12)0.24717 (11)0.41849 (9)0.0184 (3)
C21.57311 (12)0.28995 (11)0.36004 (9)0.0178 (2)
C31.61894 (13)0.22551 (11)0.27605 (10)0.0210 (3)
H31.5730 (17)0.1494 (16)0.2507 (13)0.031 (4)*
C41.72921 (14)0.26744 (12)0.22595 (10)0.0233 (3)
H41.7621 (17)0.2243 (16)0.1683 (13)0.030 (4)*
C51.79286 (13)0.37355 (12)0.26222 (10)0.0215 (3)
C61.75010 (13)0.44096 (11)0.34390 (10)0.0211 (3)
H61.7980 (16)0.5140 (16)0.3672 (12)0.029 (4)*
C71.63853 (13)0.39926 (11)0.39241 (10)0.0201 (3)
H71.6074 (16)0.4430 (14)0.4491 (13)0.024 (4)*
C81.41072 (13)0.12016 (11)0.40715 (10)0.0195 (3)
H81.4531 (16)0.0693 (15)0.3609 (13)0.027 (4)*
C91.31350 (12)0.07855 (11)0.46511 (10)0.0189 (3)
H91.2769 (16)0.1366 (15)0.5109 (12)0.024 (4)*
C101.25059 (12)0.04162 (11)0.46436 (9)0.0182 (2)
C111.14937 (13)0.06159 (11)0.53213 (10)0.0196 (3)
H111.1290 (16)0.0018 (16)0.5787 (13)0.028 (4)*
C121.07706 (12)0.17051 (11)0.53043 (10)0.0199 (3)
H121.0059 (16)0.1842 (14)0.5779 (12)0.024 (4)*
C131.10616 (12)0.26192 (11)0.46193 (9)0.0182 (3)
C141.21398 (12)0.24626 (11)0.39687 (9)0.0187 (3)
C151.28376 (12)0.13679 (11)0.39695 (10)0.0189 (3)
H151.3551 (16)0.1271 (15)0.3518 (13)0.026 (4)*
C161.36498 (14)0.34589 (13)0.28868 (11)0.0250 (3)
H16A1.4443 (17)0.3331 (15)0.3422 (13)0.028 (4)*
H16C1.3620 (16)0.2806 (14)0.2335 (12)0.023 (4)*
H16B1.3695 (17)0.4287 (15)0.2550 (13)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0297 (4)0.0264 (4)0.0307 (4)0.0078 (3)0.0101 (3)0.0034 (3)
O10.0235 (5)0.0194 (4)0.0306 (5)0.0001 (4)0.0062 (4)0.0052 (4)
O20.0219 (4)0.0178 (4)0.0252 (5)0.0039 (3)0.0035 (4)0.0002 (3)
O30.0272 (5)0.0195 (5)0.0254 (5)0.0023 (4)0.0075 (4)0.0047 (3)
O40.0229 (5)0.0207 (5)0.0369 (6)0.0017 (4)0.0063 (4)0.0015 (4)
C10.0169 (5)0.0181 (6)0.0195 (6)0.0012 (4)0.0010 (4)0.0003 (4)
C20.0186 (6)0.0152 (5)0.0191 (6)0.0001 (4)0.0006 (4)0.0014 (4)
C30.0260 (6)0.0160 (6)0.0209 (6)0.0026 (5)0.0017 (5)0.0001 (4)
C40.0307 (7)0.0188 (6)0.0213 (6)0.0017 (5)0.0070 (5)0.0005 (5)
C50.0228 (6)0.0202 (6)0.0218 (6)0.0028 (5)0.0031 (5)0.0064 (5)
C60.0245 (6)0.0155 (6)0.0224 (6)0.0043 (5)0.0018 (5)0.0021 (4)
C70.0243 (6)0.0158 (6)0.0199 (6)0.0001 (5)0.0014 (5)0.0001 (5)
C80.0194 (6)0.0170 (6)0.0219 (6)0.0007 (5)0.0013 (5)0.0014 (5)
C90.0189 (6)0.0175 (6)0.0198 (6)0.0016 (4)0.0004 (5)0.0011 (4)
C100.0178 (5)0.0180 (6)0.0183 (6)0.0003 (4)0.0005 (4)0.0016 (4)
C110.0201 (6)0.0183 (6)0.0206 (6)0.0025 (5)0.0021 (5)0.0007 (5)
C120.0176 (6)0.0206 (6)0.0218 (6)0.0008 (4)0.0031 (5)0.0022 (5)
C130.0172 (5)0.0167 (6)0.0201 (6)0.0009 (4)0.0011 (4)0.0031 (4)
C140.0199 (6)0.0179 (6)0.0179 (6)0.0013 (4)0.0003 (5)0.0004 (4)
C150.0185 (6)0.0201 (6)0.0183 (6)0.0000 (4)0.0024 (4)0.0008 (4)
C160.0262 (7)0.0247 (7)0.0247 (6)0.0011 (5)0.0064 (5)0.0046 (5)
Geometric parameters (Å, º) top
F1—C51.3604 (14)C6—H60.962 (17)
O1—C11.2374 (15)C7—H70.945 (16)
O2—C131.3585 (15)C8—C91.3430 (18)
O2—H20.91 (2)C8—H80.939 (17)
O3—C141.3702 (15)C9—C101.4572 (17)
O3—C161.4361 (16)C9—H90.960 (16)
O4—H4A0.88 (2)C10—C111.3968 (17)
O4—H4B0.83 (3)C10—C151.4135 (17)
C1—C81.4712 (17)C11—C121.3899 (18)
C1—C21.4947 (17)C11—H110.950 (17)
C2—C31.3969 (18)C12—C131.3811 (18)
C2—C71.4043 (17)C12—H120.980 (16)
C3—C41.3874 (18)C13—C141.4175 (17)
C3—H30.989 (17)C14—C151.3837 (17)
C4—C51.3807 (18)C15—H150.955 (16)
C4—H40.959 (17)C16—H16A0.992 (17)
C5—C61.3788 (19)C16—H16C1.005 (16)
C6—C71.3863 (18)C16—H16B1.009 (17)
C13—O2—H2109.5 (12)C8—C9—C10128.85 (12)
C14—O3—C16116.62 (10)C8—C9—H9116.0 (9)
H4A—O4—H4B106 (2)C10—C9—H9115.1 (9)
O1—C1—C8121.50 (11)C11—C10—C15118.81 (11)
O1—C1—C2119.00 (11)C11—C10—C9117.62 (11)
C8—C1—C2119.48 (11)C15—C10—C9123.54 (11)
C3—C2—C7119.24 (11)C12—C11—C10121.14 (12)
C3—C2—C1122.83 (11)C12—C11—H11120.2 (10)
C7—C2—C1117.93 (11)C10—C11—H11118.7 (10)
C4—C3—C2120.69 (12)C13—C12—C11120.00 (11)
C4—C3—H3118.6 (10)C13—C12—H12119.0 (9)
C2—C3—H3120.7 (10)C11—C12—H12121.0 (9)
C5—C4—C3118.12 (12)O2—C13—C12123.52 (11)
C5—C4—H4120.1 (10)O2—C13—C14116.73 (11)
C3—C4—H4121.8 (10)C12—C13—C14119.74 (11)
F1—C5—C6118.65 (11)O3—C14—C15125.71 (11)
F1—C5—C4118.15 (12)O3—C14—C13114.20 (10)
C6—C5—C4123.19 (12)C15—C14—C13120.09 (11)
C5—C6—C7118.23 (12)C14—C15—C10120.06 (11)
C5—C6—H6120.5 (9)C14—C15—H15119.1 (10)
C7—C6—H6121.2 (9)C10—C15—H15120.8 (10)
C6—C7—C2120.49 (12)O3—C16—H16A109.8 (9)
C6—C7—H7120.2 (10)O3—C16—H16C110.4 (9)
C2—C7—H7119.3 (9)H16A—C16—H16C110.4 (13)
C9—C8—C1119.88 (11)O3—C16—H16B105.0 (10)
C9—C8—H8121.7 (10)H16A—C16—H16B110.9 (14)
C1—C8—H8118.4 (10)H16C—C16—H16B110.1 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.91 (2)1.74 (2)2.6479 (14)173.5 (18)
O4—H4A···O10.88 (2)1.90 (2)2.7672 (15)173 (2)
O4—H4B···O2ii0.83 (3)2.17 (3)2.8485 (15)139 (2)
O4—H4B···O3ii0.83 (3)2.38 (3)3.1283 (15)151 (2)
C8—H8···F1iii0.94 (2)2.48 (2)3.3931 (17)164 (1)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z; (iii) x+7/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13FO3·H2O
Mr290.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.787 (2), 10.993 (3), 12.781 (3)
β (°) 95.722 (4)
V3)1368.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2009)
Tmin, Tmax0.845, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
11909, 3203, 2855
Rint0.022
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.02
No. of reflections3203
No. of parameters250
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.91 (2)1.74 (2)2.6479 (14)173.5 (18)
O4—H4A···O10.88 (2)1.90 (2)2.7672 (15)173 (2)
O4—H4B···O2ii0.83 (3)2.17 (3)2.8485 (15)139 (2)
O4—H4B···O3ii0.83 (3)2.38 (3)3.1283 (15)151 (2)
C8—H8···F1iii0.94 (2)2.48 (2)3.3931 (17)164 (1)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z; (iii) x+7/2, y+1/2, z+1/2.
 

Acknowledgements

This work was funded in part by the Louisiana Cancer Research Consortium (LCRC) and the National Center for Research Resources RCMI Program Grant No. 1 G12RR026260–01 (FP-S). The Louisiana Board of Regents is thanked for enhancement grant LEQSF–(2002–03)–ENH–TR–67 with which the Tulane X-ray diffractometer was purchased, and Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility. Support from the National Science Foundation (grant CHE-0845829 to JPD) is gratefully acknowledged.

References

First citationAnto, R. J., Sukumaran, K., Kuttan, G., Rao, M. N. A., Subbaraju, V. & Kuttan, R. (1995). Cancer Lett. 97, 33–37.  CrossRef CAS PubMed Web of Science
First citationArai, H., Higashigaki, Y., Gotoh, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755–5758.  CSD CrossRef CAS Web of Science
First citationBatovska, D. I. & Parushev, S. P. (2010). Int. J. Curr. Chem. 1, 217–236.  CAS
First citationBatovska, D. I. & Todorova, I. T. (2010). Curr. Clin. Pharm. 5, 1–29.  CrossRef CAS
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationButcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4059–o4060.  Web of Science CSD CrossRef IUCr Journals
First citationCalliste, C.-A., Le Bail, J.-C., Trouillas, P., Pouget, C., Habrioux, G., Chulia, A.-J. & Duroux, J.-L. (2001). Anticancer Res. 21, 3949–3956.  Web of Science PubMed CAS
First citationDucki, S. (2009). Anti-Cancer Agent Med. Chem. 9, 336–347.  CrossRef CAS
First citationGupta, D., Jain, D. K. & Trivedi, P. (2010). Int. J. Chem. Sci. 8, 649–654.  CAS
First citationHayashi, N., Higuchi, H. & Ninomiya, K. (2009). X/π Interactions in Aromatic Heterocycles: Basic Principles and Recent Advances, Topics in Heterocyclic Chemistry: Heterocyclic Supramolecules II 18, edited by K. Matsumoto & N. Hayashi, pp. 1–35. Heidelberg, Germany: Springer.
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science
First citationKathiravan, M. K., Salake, A. B., Chothe, A. S., Dudhe, P. B., Watode, R. P., Mukta, M. S. & Gadhwe, S. (2012). Bioorgan. Med. Chem. 20, 5678–5698.  Web of Science CrossRef CAS
First citationKatsori, A.-M. & Hadjipavlou-Litina, D. (2011). Expert Opin. Ther. Patents, 21, 1575–1596.
First citationKontogiorgis, C., Mantzanidou, M. & Hadjipavlou-Litina, D. (2008). Mini Rev. Med. Chem. 8, 1224–1242.  Web of Science CrossRef PubMed CAS
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS
First citationOhkura, K., Kashino, S. & Haisa, M. (1973). Bull. Chem. Soc. Jpn, 46, 627–628.  CrossRef CAS Web of Science
First citationOrlikova, B., Tasdemir, D., Golais, F., Dicato, M. & Diederich, M. (2011). Genes Nutr. 6, 125–147.  Web of Science CrossRef CAS PubMed
First citationRabinovich, D. (1970). J. Chem. Soc. B, pp. 11–16.
First citationSahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209–225.  Web of Science CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2991–o2992.  Web of Science CSD CrossRef IUCr Journals
First citationVarinska, L., Ivanova, L. & Mojzis, J. (2010). Int. J. Curr. Chem. 1, 63–71.  CAS
First citationWu, M.-H., Yang, X.-H., Zou, W. D., Liu, W.-J. & Li, C. (2006). Z. Kristallogr. New Cryst. Struct. 221, 323–324.  CAS
First citationYadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295–309.  Web of Science CrossRef CAS PubMed
First citationYathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2200–o2201.  Web of Science CSD CrossRef IUCr Journals
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3631–o3632.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o558-o559
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds