organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,5E)-2,5-Bis(4-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)cyclo­penta­none ethanol monosolvate

aFaculty of Pharmacy, Muhammadiyah University, Jl. A. Yani Tromol Pos I Pabelan, Kartosuro, Surakarta 57162, Indonesia, bFaculty of Pharmacy, University of Indonesia, Kampus Universitas Indonesia, Depok 16424, Indonesia, and cFaculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia
*Correspondence e-mail: arry.yanuar@ui.ac.id

(Received 14 December 2012; accepted 23 February 2013; online 13 March 2013)

In the title structure, C21H20O5·C2H5OH, the curcumine-type mol­ecule has a double E conformation for the two benzyl­idene double bonds [C=C = 1.342 (4) and 1.349 (4) Å] and is nearly planar with respect to the non-H atoms (r.m.s. deviation from planarity = 0.069 Å). The two phenolic OH groups form bifurcated hydrogen bonds with intra­molecular branches to adjacent meth­oxy O atoms and inter­molecular branches to either a neighbouring mol­ecule or an ethanol solvent mol­ecule. The ethanol O atom donates a hydrogen bond to the keto O atom. These hydrogen bonds link the constituents into layers parallel to (101) in the crystal structure.

Related literature

For the biological activity of curcumin-type compounds, see: Ohori et al. (2006[Ohori, M., Yamakoshi, H., Tomozawa, M., Shibuya, M., Kakudo, Y., Takahashi, A., Takahashi, S., Kato, S., Suzuki, T., Ishioka, C., Iwabuchi, Y. & Shibata, H. (2006). Mol. Cancer Ther. 5, 2563-2571.]); Da'i et al. (2007[Da'i, M., Supardjan, A. M., Meiyanto, E. & Jenie, U. A. (2007). Majalah Farmasi Indonesia, 18, 40-47.]); Anand et al. (2008[Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N. & Agarwal, B. B. (2008). Biochem. Pharmacol. 76, 1590-1611.]). For the synthesis of the title compound, see: Sardjiman et al. (1997[Sardjiman, S. S., Reksohadiprodjo, M. S., Hakim, L., Van Der Goot, H. & Timmerman, H. (1997). Eur. J. Med. Chem. 32, 625-630.]). For related structures, see: Du et al. (2010[Du, Z.-Y., Huang, H.-R., Lu, Y.-J., Zhang, K. & Fang, Y.-X. (2010). Acta Cryst. E66, o3334.], 2011[Du, Z.-Y., Huang, H.-R., Lu, Y.-J., Zhang, K. & Fang, Y.-X. (2011). Acta Cryst. E67, o116.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20O5·C2H6O

  • Mr = 398.45

  • Monoclinic, P 21 /n

  • a = 8.880 (4) Å

  • b = 17.050 (5) Å

  • c = 13.950 (5) Å

  • β = 103.527 (14)°

  • V = 2053.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.671, Tmax = 0.994

  • 16083 measured reflections

  • 3720 independent reflections

  • 1748 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.157

  • S = 1.00

  • 3720 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H12⋯O2 0.82 2.21 2.653 (4) 114
O3—H12⋯O5i 0.82 2.13 2.802 (3) 139
O5—H20⋯O4 0.82 2.22 2.666 (3) 114
O5—H20⋯O6ii 0.82 1.93 2.682 (4) 151
O6—H26⋯O1iii 0.82 1.99 2.802 (4) 172
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title structure contains a curcumin analogue synthesized from vanillin (4-hydroxy-3-methoxybenzaldehyde) and cyclopentanone using acidic catalysis (Sardjiman et al., 1997). This curcumin analogue showed good activities as anticancer agent in T47D cell line tests, and has also antioxidant and anti-inflammatory properties (Ohori et al., 2006; Da'i et al., 2007; Anand et al., 2008). As an extension of the work on this compound (Sardjiman et al., 1997; Da'i et al., 2007) we report here the crystal structure of (I), an ethanol solvate. The curcumin type molecule contains two double bonds between C2 and C6 and C5 and C14 which connect the cyclopentanone fragment to the 4-hydroxy-3-methoxybenzylidene groups in E configuration relative to the carbonyl group. The entire molecule is essentially planar with respect to non-hydrogen atoms. The keto-diene system shows usual bond distances and angles. While the angles C1—C2=C6 = 118.9 (3)° and C1—C5=C14 = 118.7 (3)° are close to the ideal Csp2 bond angle of 120°, the bond angles C2=C6—C7 = 132.3 (3)° and C5=C14—C15 = 132.5 (3)° are large in response to intramolecular H···H contacts (phenyl H6 and H14 with the C2H4 group of the cyclopentanone ring). A partial conjugation between the C2=C6 and C5=C14 double bonds and the carbonyl group C1=O1 is evident from the bond lengths table. All other bond lengths and angles adopt usual values (Du et al., 2010, 2011). In the crystal structure the curcumin type molecules are oriented approximately parallel to (203) and form together with the ethanol solvent molecules layer-like assemblies parallel to (101) linked via hydrogen bonds (Table 1). The two phenolic OH groups form bifurcated hydrogen bonds with intramolecular branches to adjacent methoxy O atoms (O3—H12···O5, O5—H20···O4) and intermolecular branches to either a neigbour molecule (O3—H12···O5i) or an ethanol molecule (O5—H20···O6ii). Ethanol donates a hydrogen bond to the keto-oxygen atom.

Related literature top

For the biological activity of curcumin-type compounds, see: Ohori et al. (2006); Da'i et al. (2007); Anand et al. (2008). For the synthesis of the title compound, see: Sardjiman et al. (1997). For related structures, see: Du et al. (2010, 2011).

Experimental top

The compound was synthesized according to Sardjiman et al. (1997). It was then dissolved in boiling ethanol and crystallized by slow cooling giving yellowish crystals that were stored in cold ethanol prior to X-ray analysis.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.97 Å, O—H = 0.82 Å) and constrained to ride on their parent atoms, with Uĩso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3,O). CH3 and OH groups were refined in orientation using AFIX 137 and AFIX 147 of program SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with the atomic numbering scheme. The thermal ellipsoids are scaled to 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound.
(2E,5E)-2,5-Bis(4-hydroxy-3-methoxybenzylidene)cyclopentanone ethanol monosolvate top
Crystal data top
C21H20O5·C2H6OF(000) = 848.00
Mr = 398.45Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 7488 reflections
a = 8.880 (4) Åθ = 3.0–25.3°
b = 17.050 (5) ŵ = 0.09 mm1
c = 13.950 (5) ÅT = 296 K
β = 103.527 (14)°Block, yellow
V = 2053.4 (13) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3720 independent reflections
Radiation source: fine-focus sealed tube1748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
ω scansθmax = 25.4°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1010
Tmin = 0.671, Tmax = 0.994k = 1920
16083 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.4936P]
where P = (Fo2 + 2Fc2)/3
3720 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H20O5·C2H6OV = 2053.4 (13) Å3
Mr = 398.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.880 (4) ŵ = 0.09 mm1
b = 17.050 (5) ÅT = 296 K
c = 13.950 (5) Å0.12 × 0.10 × 0.06 mm
β = 103.527 (14)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3720 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
1748 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.994Rint = 0.119
16083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
3720 reflectionsΔρmin = 0.21 e Å3
268 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8369 (3)0.06512 (12)0.4353 (2)0.0667 (8)
O20.5966 (3)0.31177 (12)0.67112 (19)0.0615 (8)
O30.7414 (4)0.40870 (12)0.5739 (2)0.0710 (8)
H120.68080.41760.60880.107*
O40.4611 (3)0.35840 (12)0.73021 (19)0.0604 (8)
O50.5611 (3)0.48579 (11)0.65321 (19)0.0633 (8)
H200.51290.48160.69640.095*
C10.7723 (4)0.05470 (17)0.5029 (3)0.0476 (9)
C20.7402 (4)0.02157 (17)0.5437 (2)0.0445 (9)
C30.6494 (4)0.00895 (16)0.6200 (3)0.0486 (9)
H10.70290.03180.68240.058*
H20.54800.03300.59960.058*
C40.6338 (4)0.08115 (17)0.6307 (3)0.0503 (10)
H30.52560.09630.61740.060*
H40.68450.09800.69670.060*
C50.7110 (4)0.11694 (17)0.5560 (2)0.0437 (9)
C60.7921 (4)0.08723 (17)0.5092 (3)0.0479 (9)
H50.84980.07820.46260.057*
C70.7754 (4)0.16971 (17)0.5307 (2)0.0444 (9)
C80.6881 (4)0.19778 (17)0.5944 (2)0.0459 (9)
H60.63650.16260.62650.055*
C90.6773 (4)0.27714 (18)0.6102 (3)0.0467 (9)
C100.7508 (4)0.33004 (18)0.5607 (3)0.0501 (10)
C110.8375 (5)0.30373 (18)0.4982 (3)0.0548 (10)
H70.88800.33920.46600.066*
C120.8498 (4)0.22375 (17)0.4831 (3)0.0521 (10)
H80.90880.20600.44040.062*
C130.5081 (5)0.2631 (2)0.7187 (3)0.0695 (12)
H90.43350.23470.67030.104*
H100.57530.22680.76090.104*
H110.45540.29480.75750.104*
C140.7297 (4)0.19233 (17)0.5318 (2)0.0469 (9)
H130.78380.19830.48260.056*
C150.6821 (4)0.26566 (16)0.5675 (2)0.0429 (9)
C160.5905 (4)0.27266 (17)0.6358 (2)0.0441 (9)
H140.55710.22760.66220.053*
C170.5488 (4)0.34504 (18)0.6647 (2)0.0463 (9)
C180.5994 (4)0.41270 (18)0.6257 (3)0.0489 (9)
C190.6884 (5)0.40735 (19)0.5584 (3)0.0588 (11)
H150.72170.45260.53230.071*
C200.7290 (4)0.33428 (18)0.5292 (3)0.0541 (10)
H160.78910.33100.48290.065*
C210.3987 (4)0.29279 (19)0.7699 (3)0.0586 (11)
H170.48150.25990.80440.088*
H180.33340.26360.71750.088*
H190.33890.31050.81490.088*
O60.1141 (4)0.02592 (15)0.7218 (2)0.0752 (9)
H260.11940.00160.67460.113*
C220.3617 (9)0.0071 (4)0.8151 (6)0.172 (3)
H210.45630.01430.85410.257*
H220.38470.04130.76570.257*
H230.30980.03620.85680.257*
C230.2672 (9)0.0531 (3)0.7700 (5)0.122 (2)
H240.31410.07810.72170.147*
H250.25860.09210.81910.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.094 (2)0.0421 (14)0.080 (2)0.0005 (13)0.0528 (19)0.0005 (12)
O20.069 (2)0.0486 (14)0.0746 (19)0.0009 (13)0.0332 (16)0.0090 (12)
O30.092 (2)0.0348 (14)0.097 (2)0.0040 (13)0.0435 (17)0.0012 (12)
O40.079 (2)0.0435 (14)0.0726 (19)0.0005 (12)0.0454 (17)0.0038 (12)
O50.090 (2)0.0348 (13)0.078 (2)0.0002 (12)0.0455 (17)0.0016 (11)
C10.052 (3)0.037 (2)0.057 (3)0.0001 (16)0.019 (2)0.0001 (17)
C20.043 (2)0.040 (2)0.051 (2)0.0009 (15)0.013 (2)0.0001 (16)
C30.056 (3)0.0378 (18)0.053 (2)0.0033 (16)0.015 (2)0.0043 (15)
C40.061 (3)0.0409 (19)0.054 (2)0.0044 (17)0.022 (2)0.0033 (16)
C50.046 (2)0.0357 (19)0.051 (2)0.0039 (15)0.0140 (19)0.0004 (15)
C60.053 (3)0.043 (2)0.052 (2)0.0002 (17)0.020 (2)0.0017 (16)
C70.049 (3)0.0351 (19)0.050 (2)0.0004 (16)0.012 (2)0.0022 (15)
C80.049 (3)0.040 (2)0.051 (2)0.0038 (16)0.015 (2)0.0010 (16)
C90.049 (3)0.041 (2)0.053 (2)0.0049 (16)0.017 (2)0.0039 (16)
C100.055 (3)0.036 (2)0.059 (3)0.0047 (17)0.014 (2)0.0006 (17)
C110.063 (3)0.039 (2)0.067 (3)0.0010 (17)0.026 (2)0.0100 (17)
C120.061 (3)0.039 (2)0.060 (3)0.0009 (17)0.023 (2)0.0033 (16)
C130.070 (3)0.078 (3)0.070 (3)0.007 (2)0.034 (3)0.006 (2)
C140.054 (3)0.046 (2)0.044 (2)0.0016 (17)0.018 (2)0.0015 (16)
C150.051 (3)0.0325 (18)0.048 (2)0.0010 (15)0.016 (2)0.0000 (15)
C160.052 (3)0.0359 (19)0.048 (2)0.0040 (16)0.018 (2)0.0014 (15)
C170.050 (3)0.042 (2)0.049 (2)0.0051 (16)0.018 (2)0.0027 (16)
C180.059 (3)0.037 (2)0.054 (2)0.0043 (17)0.020 (2)0.0039 (16)
C190.079 (3)0.038 (2)0.071 (3)0.0042 (19)0.042 (3)0.0082 (18)
C200.072 (3)0.041 (2)0.060 (3)0.0007 (18)0.037 (2)0.0005 (17)
C210.068 (3)0.058 (2)0.058 (3)0.0111 (19)0.033 (2)0.0002 (18)
O60.092 (3)0.0635 (18)0.082 (2)0.0124 (16)0.0453 (19)0.0068 (14)
C220.151 (7)0.157 (6)0.201 (8)0.001 (5)0.030 (6)0.041 (6)
C230.158 (7)0.105 (4)0.113 (5)0.026 (4)0.051 (5)0.003 (4)
Geometric parameters (Å, º) top
O1—C11.226 (4)C11—C121.388 (4)
O2—C91.368 (4)C11—H70.9300
O2—C131.411 (4)C12—H80.9300
O3—C101.359 (4)C13—H90.9600
O3—H120.8200C13—H100.9600
O4—C171.351 (4)C13—H110.9600
O4—C211.417 (4)C14—C151.445 (4)
O5—C181.370 (4)C14—H130.9300
O5—H200.8200C15—C201.390 (4)
C1—C51.469 (4)C15—C161.395 (4)
C1—C21.474 (4)C16—C171.376 (4)
C2—C61.342 (4)C16—H140.9300
C2—C31.493 (4)C17—C181.394 (4)
C3—C41.553 (4)C18—C191.365 (5)
C3—H10.9700C19—C201.385 (4)
C3—H20.9700C19—H150.9300
C4—C51.504 (5)C20—H160.9300
C4—H30.9700C21—H170.9600
C4—H40.9700C21—H180.9600
C5—C141.349 (4)C21—H190.9600
C6—C71.453 (4)O6—C231.445 (7)
C6—H50.9300O6—H260.8200
C7—C121.390 (4)C22—C231.382 (7)
C7—C81.394 (4)C22—H210.9600
C8—C91.378 (4)C22—H220.9600
C8—H60.9300C22—H230.9600
C9—C101.388 (5)C23—H240.9700
C10—C111.366 (5)C23—H250.9700
C9—O2—C13118.0 (3)O2—C13—H9109.5
C10—O3—H12109.5O2—C13—H10109.5
C17—O4—C21118.1 (2)H9—C13—H10109.5
C18—O5—H20109.5O2—C13—H11109.5
O1—C1—C5125.3 (3)H9—C13—H11109.5
O1—C1—C2126.3 (3)H10—C13—H11109.5
C5—C1—C2108.4 (3)C5—C14—C15132.5 (3)
C6—C2—C1118.9 (3)C5—C14—H13113.8
C6—C2—C3131.6 (3)C15—C14—H13113.8
C1—C2—C3109.5 (3)C20—C15—C16117.7 (3)
C2—C3—C4106.6 (3)C20—C15—C14117.2 (3)
C2—C3—H1110.4C16—C15—C14125.0 (3)
C4—C3—H1110.4C17—C16—C15121.2 (3)
C2—C3—H2110.4C17—C16—H14119.4
C4—C3—H2110.4C15—C16—H14119.4
H1—C3—H2108.6O4—C17—C16125.9 (3)
C5—C4—C3105.6 (3)O4—C17—C18114.4 (3)
C5—C4—H3110.6C16—C17—C18119.6 (3)
C3—C4—H3110.6C19—C18—O5118.4 (3)
C5—C4—H4110.6C19—C18—C17120.3 (3)
C3—C4—H4110.6O5—C18—C17121.3 (3)
H3—C4—H4108.7C18—C19—C20119.7 (3)
C14—C5—C1118.7 (3)C18—C19—H15120.2
C14—C5—C4131.5 (3)C20—C19—H15120.2
C1—C5—C4109.8 (3)C19—C20—C15121.5 (3)
C2—C6—C7132.3 (3)C19—C20—H16119.3
C2—C6—H5113.8C15—C20—H16119.3
C7—C6—H5113.8O4—C21—H17109.5
C12—C7—C8118.3 (3)O4—C21—H18109.5
C12—C7—C6117.4 (3)H17—C21—H18109.5
C8—C7—C6124.3 (3)O4—C21—H19109.5
C9—C8—C7120.6 (3)H17—C21—H19109.5
C9—C8—H6119.7H18—C21—H19109.5
C7—C8—H6119.7C23—O6—H26109.5
O2—C9—C8126.1 (3)C23—C22—H21109.5
O2—C9—C10113.8 (3)C23—C22—H22109.5
C8—C9—C10120.1 (3)H21—C22—H22109.5
O3—C10—C11118.2 (3)C23—C22—H23109.5
O3—C10—C9121.5 (3)H21—C22—H23109.5
C11—C10—C9120.3 (3)H22—C22—H23109.5
C10—C11—C12119.7 (3)C22—C23—O6112.2 (5)
C10—C11—H7120.1C22—C23—H24109.2
C12—C11—H7120.1O6—C23—H24109.2
C11—C12—C7121.0 (3)C22—C23—H25109.2
C11—C12—H8119.5O6—C23—H25109.2
C7—C12—H8119.5H24—C23—H25107.9
O1—C1—C2—C63.9 (6)C8—C9—C10—C111.8 (6)
C5—C1—C2—C6177.1 (3)O3—C10—C11—C12179.9 (3)
O1—C1—C2—C3175.8 (4)C9—C10—C11—C121.1 (6)
C5—C1—C2—C33.2 (4)C10—C11—C12—C70.1 (6)
C6—C2—C3—C4176.9 (4)C8—C7—C12—C110.1 (5)
C1—C2—C3—C43.5 (4)C6—C7—C12—C11178.9 (3)
C2—C3—C4—C52.5 (4)C1—C5—C14—C15178.7 (4)
O1—C1—C5—C142.1 (6)C4—C5—C14—C150.6 (7)
C2—C1—C5—C14178.9 (3)C5—C14—C15—C20176.5 (4)
O1—C1—C5—C4177.4 (4)C5—C14—C15—C164.7 (6)
C2—C1—C5—C41.6 (4)C20—C15—C16—C170.4 (5)
C3—C4—C5—C14178.8 (4)C14—C15—C16—C17179.1 (3)
C3—C4—C5—C10.6 (4)C21—O4—C17—C163.4 (5)
C1—C2—C6—C7177.4 (3)C21—O4—C17—C18177.1 (3)
C3—C2—C6—C72.2 (7)C15—C16—C17—O4179.9 (3)
C2—C6—C7—C12177.9 (4)C15—C16—C17—C180.4 (5)
C2—C6—C7—C83.2 (6)O4—C17—C18—C19179.8 (3)
C12—C7—C8—C90.6 (5)C16—C17—C18—C190.7 (6)
C6—C7—C8—C9179.5 (3)O4—C17—C18—O50.0 (5)
C13—O2—C9—C83.8 (5)C16—C17—C18—O5179.6 (3)
C13—O2—C9—C10175.2 (3)O5—C18—C19—C20180.0 (3)
C7—C8—C9—O2179.5 (3)C17—C18—C19—C200.3 (6)
C7—C8—C9—C101.6 (5)C18—C19—C20—C150.5 (6)
O2—C9—C10—O30.4 (5)C16—C15—C20—C190.8 (5)
C8—C9—C10—O3179.4 (3)C14—C15—C20—C19179.6 (3)
O2—C9—C10—C11179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H12···O20.822.212.653 (4)114
O3—H12···O5i0.822.132.802 (3)139
O5—H20···O40.822.222.666 (3)114
O5—H20···O6ii0.821.932.682 (4)151
O6—H26···O1iii0.821.992.802 (4)172
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H20O5·C2H6O
Mr398.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.880 (4), 17.050 (5), 13.950 (5)
β (°) 103.527 (14)
V3)2053.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.671, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
16083, 3720, 1748
Rint0.119
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.157, 1.00
No. of reflections3720
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H12···O20.822.212.653 (4)114.3
O3—H12···O5i0.822.132.802 (3)139.3
O5—H20···O40.822.222.666 (3)114.0
O5—H20···O6ii0.821.932.682 (4)151.1
O6—H26···O1iii0.821.992.802 (4)172.1
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank Mrs Sachiko Iida (Iida Group Foundation, Japan) for funding, Professor Masashi Kawaichi for providing access to his laboratory for MD, and NAIST (Nara Institute of Science and Technology), Japan, for access to the X-ray facility.

References

First citationAnand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N. & Agarwal, B. B. (2008). Biochem. Pharmacol. 76, 1590–1611.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDa'i, M., Supardjan, A. M., Meiyanto, E. & Jenie, U. A. (2007). Majalah Farmasi Indonesia, 18, 40–47.  Google Scholar
First citationDu, Z.-Y., Huang, H.-R., Lu, Y.-J., Zhang, K. & Fang, Y.-X. (2010). Acta Cryst. E66, o3334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, Z.-Y., Huang, H.-R., Lu, Y.-J., Zhang, K. & Fang, Y.-X. (2011). Acta Cryst. E67, o116.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOhori, M., Yamakoshi, H., Tomozawa, M., Shibuya, M., Kakudo, Y., Takahashi, A., Takahashi, S., Kato, S., Suzuki, T., Ishioka, C., Iwabuchi, Y. & Shibata, H. (2006). Mol. Cancer Ther. 5, 2563–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSardjiman, S. S., Reksohadiprodjo, M. S., Hakim, L., Van Der Goot, H. & Timmerman, H. (1997). Eur. J. Med. Chem. 32, 625–630.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds