supplementary materials


wm2729 scheme

Acta Cryst. (2013). E69, m190    [ doi:10.1107/S160053681300603X ]

4-(Dimethylamino)pyridinium tetrachloridoferrate(III)

A. Khadri, R. Bouchene, S. Bouacida, H. Merazig and T. Roisnel

Abstract top

The title salt, (C7H11N2)[FeCl4], consists of one essentially planar (the r.m.s. deviation for all non-H atoms being 0.004 Å) 4-(dimethylamino)pyridinium cation and a tetrahedral tetrachloridoferrate(III) anion. The cations and anions are arranged in layers parallel to (010). Besides electrostatic interactions, the crystal packing features N-H...Cl and C-H...Cl hydrogen bonds between cations and anions, forming a three-dimensional network.

Comment top

In the course of previuos studies on intermolecular hydrogen-bonding interactions in transition metal hybrid complexes with N-heterocyclic ligands (Bouacida, 2008; Bouacida et al., 2007, 2009), we report here on synthesis and structural characterization of a new organic/inorganic hybrid, involving Fe(III) and 4-(dimethylamino)pyridine, (C7H11N2)+.[FeCl4]-, (I). The molecular geometry of the constituents and the atom-numbering scheme of (I) are shown in Fig. 1.

The asymmetric unit of (I) consists of tetrahedral [FeCl4]- anions and one protoned 4-(dimethylamino)pyridine cation that is essentially planar; its r.m.s. deviation for all non-H atoms is 0.0043 Å, with a maximum deviation from the mean plane of -0.0094 (2) Å for the C4 atom. The packing of the ionic entities is realized by alternating layers of cations and anions parallel to (010) whereby the dimethylaminopyridinium molecules are oriented in a zig-zag fashion parallel to the (210) and (210) planes, respectively (Fig. 2). The crystal packing is stabilized by N—H···Cl and C—H···Cl hydrogen bonds involving the chloride atoms of the anions as acceptors (Table 1, Fig. 3). All these interactions link the layers together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

A similar complex with a 4-(dimethylamino)pyridinium cation but a different metal-based anion, viz. (C7H11N2)+[Cr(C2O4)2(H2O)2]-, has been reported recently (Nenwa et al., 2010).

Related literature top

For background to hybrid compounds based on protonated substituted N-heterocyclic ligands, see: Bouacida (2008); Bouacida et al. (2007, 2009). For a related structure, see: Nenwa et al. (2010).

Experimental top

4-(dimethylamino)pyridine and iron(III) chloride hexahydrate were mixed in an equimolar ratio in acidified water (HCl, 37%wt). The solution was kept at room temperature for ten days after which crystals suitable for X-ray diffraction could be isolated.

Refinement top

H atoms were localized from Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with C—H = 0.98 Å (methyl) or C—H = 0.95 Å (aromatic), and with Uiso(H) = 1.2 Ueq(Caryl)and Uiso(H) = 1.5 Ueq(Cmethyl). H3 attached to the pyridinium N atom was refined without constraints.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram viewed along [001] showing alterning layers of 4-(dimethylamino)pyridinium cations and [FeCl4] tetrahedraparallel to (010).
[Figure 3] Fig. 3. Packing diagram viewed along [100] showing N—H···Cl and C—H···Cl hydrogen-bonding interactions as dashed lines.
4-(Dimethylamino)pyridinium tetrachloridoferrate(III) top
Crystal data top
(C7H11N2)[FeCl4]F(000) = 644
Mr = 320.83Dx = 1.664 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2278 reflections
a = 9.0360 (2) Åθ = 2.9–26.5°
b = 14.0492 (5) ŵ = 1.98 mm1
c = 10.2077 (3) ÅT = 100 K
β = 98.7259 (9)°Plate, orange
V = 1280.85 (7) Å30.17 × 0.12 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2925 independent reflections
Radiation source: sealed tube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 811
Tmin = 0.789, Tmax = 0.924k = 1818
11192 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.6542P]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
(C7H11N2)[FeCl4]V = 1280.85 (7) Å3
Mr = 320.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0360 (2) ŵ = 1.98 mm1
b = 14.0492 (5) ÅT = 100 K
c = 10.2077 (3) Å0.17 × 0.12 × 0.04 mm
β = 98.7259 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
2146 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.924Rint = 0.041
11192 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081Δρmax = 0.94 e Å3
S = 1.03Δρmin = 0.56 e Å3
2925 reflectionsAbsolute structure: ?
133 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.02427 (4)0.25669 (2)0.72252 (3)0.02371 (11)
Cl10.16650 (8)0.13001 (5)0.71136 (7)0.0449 (2)
Cl20.11905 (7)0.25489 (4)0.91821 (6)0.03315 (17)
Cl30.11063 (8)0.25245 (5)0.56193 (7)0.03676 (18)
Cl40.15646 (8)0.38804 (5)0.70930 (7)0.03842 (18)
C10.3730 (3)0.42873 (17)0.8197 (3)0.0281 (6)
H10.3810.42140.9130.034*
C20.4618 (3)0.37690 (19)0.7516 (3)0.0374 (7)
H20.53220.33380.79760.045*
N30.4513 (3)0.38586 (19)0.6189 (3)0.0445 (7)
H30.506 (4)0.355 (2)0.582 (3)0.059 (11)*
C40.3518 (3)0.4461 (2)0.5506 (3)0.0417 (7)
H40.34530.45010.4570.05*
C50.2614 (3)0.50068 (19)0.6130 (3)0.0331 (6)
H50.19350.54360.56350.04*
C60.2677 (3)0.49407 (17)0.7526 (2)0.0260 (6)
N70.1790 (2)0.54643 (15)0.8167 (2)0.0305 (5)
C80.1866 (3)0.5381 (2)0.9603 (3)0.0407 (7)
H8A0.16060.47310.98290.061*
H8B0.1160.58290.99080.061*
H8C0.28840.55291.00360.061*
C90.0706 (3)0.6131 (2)0.7463 (3)0.0448 (8)
H9A0.12360.66170.70240.067*
H9B0.01430.64370.80950.067*
H9C0.00130.57860.67970.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0239 (2)0.0260 (2)0.02024 (19)0.00208 (14)0.00016 (14)0.00140 (15)
Cl10.0505 (4)0.0485 (4)0.0315 (4)0.0268 (3)0.0077 (3)0.0074 (3)
Cl20.0327 (3)0.0370 (4)0.0261 (3)0.0089 (3)0.0072 (3)0.0047 (3)
Cl30.0380 (4)0.0417 (4)0.0330 (4)0.0003 (3)0.0131 (3)0.0032 (3)
Cl40.0419 (4)0.0406 (4)0.0322 (4)0.0157 (3)0.0035 (3)0.0016 (3)
C10.0269 (13)0.0283 (14)0.0287 (14)0.0048 (11)0.0035 (11)0.0028 (11)
C20.0331 (15)0.0305 (15)0.050 (2)0.0057 (12)0.0092 (13)0.0032 (13)
N30.0481 (16)0.0367 (15)0.0554 (18)0.0106 (12)0.0295 (14)0.0140 (13)
C40.0578 (19)0.0419 (17)0.0266 (16)0.0218 (15)0.0103 (14)0.0071 (13)
C50.0404 (16)0.0321 (15)0.0255 (14)0.0088 (12)0.0002 (12)0.0008 (11)
C60.0276 (14)0.0264 (13)0.0235 (13)0.0107 (11)0.0022 (11)0.0001 (10)
N70.0314 (12)0.0300 (12)0.0299 (13)0.0015 (9)0.0036 (10)0.0003 (10)
C80.0467 (17)0.0427 (17)0.0360 (17)0.0037 (14)0.0167 (14)0.0030 (13)
C90.0347 (16)0.0370 (17)0.061 (2)0.0049 (13)0.0025 (14)0.0062 (15)
Geometric parameters (Å, º) top
Fe1—Cl32.1870 (7)C4—H40.95
Fe1—Cl12.1882 (7)C5—C61.420 (3)
Fe1—Cl42.1912 (7)C5—H50.95
Fe1—Cl22.2097 (7)C6—N71.331 (3)
C1—C21.351 (4)N7—C81.462 (3)
C1—C61.421 (3)N7—C91.463 (3)
C1—H10.95C8—H8A0.98
C2—N31.350 (4)C8—H8B0.98
C2—H20.95C8—H8C0.98
N3—C41.349 (4)C9—H9A0.98
N3—H30.79 (3)C9—H9B0.98
C4—C51.348 (4)C9—H9C0.98
Cl3—Fe1—Cl1109.18 (3)C6—C5—H5119.9
Cl3—Fe1—Cl4109.72 (3)N7—C6—C5121.4 (2)
Cl1—Fe1—Cl4111.80 (3)N7—C6—C1122.0 (2)
Cl3—Fe1—Cl2111.12 (3)C5—C6—C1116.6 (2)
Cl1—Fe1—Cl2107.27 (3)C6—N7—C8120.6 (2)
Cl4—Fe1—Cl2107.73 (3)C6—N7—C9121.4 (2)
C2—C1—C6120.4 (3)C8—N7—C9118.0 (2)
C2—C1—H1119.8N7—C8—H8A109.5
C6—C1—H1119.8N7—C8—H8B109.5
N3—C2—C1120.6 (3)H8A—C8—H8B109.5
N3—C2—H2119.7N7—C8—H8C109.5
C1—C2—H2119.7H8A—C8—H8C109.5
C4—N3—C2121.1 (3)H8B—C8—H8C109.5
C4—N3—H3121 (3)N7—C9—H9A109.5
C2—N3—H3118 (3)N7—C9—H9B109.5
C5—C4—N3121.1 (3)H9A—C9—H9B109.5
C5—C4—H4119.4N7—C9—H9C109.5
N3—C4—H4119.4H9A—C9—H9C109.5
C4—C5—C6120.1 (3)H9B—C9—H9C109.5
C4—C5—H5119.9
C6—C1—C2—N30.4 (4)C2—C1—C6—N7179.8 (2)
C1—C2—N3—C40.4 (4)C2—C1—C6—C50.4 (3)
C2—N3—C4—C51.3 (4)C5—C6—N7—C8179.6 (2)
N3—C4—C5—C61.3 (4)C1—C6—N7—C80.2 (4)
C4—C5—C6—N7179.4 (2)C5—C6—N7—C90.1 (4)
C4—C5—C6—C10.4 (3)C1—C6—N7—C9179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl2i0.79 (3)2.60 (3)3.369 (3)165 (3)
C4—H4···Cl1i0.952.743.604 (3)152
Symmetry code: (i) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl2i0.79 (3)2.60 (3)3.369 (3)165 (3)
C4—H4···Cl1i0.95002.74003.604 (3)152.00
Symmetry code: (i) x+1/2, y+1/2, z1/2.
Acknowledgements top

We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support via the PNR program.

references
References top

Bouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.

Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.

Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.

Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.

Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.